cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A333616 Expansion of x*(1 + 2*x + x^2 - 4*x^3 - x^4 + 2*x^5)/((1 - x)^3*(1 + x)^2).

Original entry on oeis.org

0, 1, 3, 6, 6, 10, 10, 15, 15, 21, 21, 28, 28, 36, 36, 45, 45, 55, 55, 66, 66, 78, 78, 91, 91, 105, 105, 120, 120, 136, 136, 153, 153, 171, 171, 190, 190, 210, 210, 231, 231, 253, 253, 276, 276, 300, 300, 325, 325, 351, 351, 378, 378, 406, 406, 435, 435, 465, 465
Offset: 0

Views

Author

Stefano Spezia, Mar 29 2020

Keywords

Comments

For n > 0, a(n) is the n-th row sum of the triangle A333416.

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{1,2,-2,-1,1},{0,1,3,6,6,10,10,15},59]
  • PARI
    my(x='x + O('x^59)); concat([0], Vec(serlaplace(((8 + 9*x + x^2)*cosh(x) + (15 + 7*x + x^2)*sinh(x) - 8*(1 + 2*x))/8)))
    
  • Sage
    (x*(1 + 2*x + x^2 - 4*x^3 - x^4 + 2*x^5)/((1 - x)^3*(1 + x)^2)).series(x, 59).coefficients(x, sparse=False)

Formula

O.g.f.: x*(1 + 2*x + x^2 - 4*x^3 - x^4 + 2*x^5)/((1 - x)^3*(1 + x)^2).
E.g.f.: ((8 + 9*x + x^2)*cosh(x) + (15 + 7*x + x^2)*sinh(x) - 8*(1 + 2*x))/8.
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5) for n > 2.
a(n) = A008805(n+1) for n > 2.
Showing 1-1 of 1 results.