cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A333446 Table T(n,k) read by upward antidiagonals. T(n,k) = Sum_{i=1..n} Product_{j=1..k} (i-1)*k+j.

Original entry on oeis.org

1, 3, 2, 6, 14, 6, 10, 44, 126, 24, 15, 100, 630, 1704, 120, 21, 190, 1950, 13584, 30360, 720, 28, 322, 4680, 57264, 390720, 666000, 5040, 36, 504, 9576, 173544, 2251200, 14032080, 17302320, 40320, 45, 744, 17556, 428568, 8626800, 110941200, 603353520, 518958720, 362880
Offset: 1

Views

Author

Chai Wah Wu, Mar 23 2020

Keywords

Comments

T(n,k) is the maximum value of Sum_{i=1..n} Product_{j=1..k} r[(i-1)*k+j] among all permutations r of {1..kn}. For the minimum value see A331889.

Examples

			From _Seiichi Manyama_, Jul 23 2020: (Start)
T(3,2) = Sum_{i=1..3} Product_{j=1..2} (i-1)*2+j = 1*2 + 3*4 + 5*6 = 44.
Square array begins:
   1,   2,    6,     24,      120,        720, ...
   3,  14,  126,   1704,    30360,     666000, ...
   6,  44,  630,  13584,   390720,   14032080, ...
  10, 100, 1950,  57264,  2251200,  110941200, ...
  15, 190, 4680, 173544,  8626800,  538459200, ...
  21, 322, 9576, 428568, 25727520, 1940869440, ... (End)
		

Crossrefs

Column k=1-3 give A000217, A268684, A268685(n-1).
Main diagonal gives A336513.

Programs

  • Python
    def T(n,k): # T(n,k) for A333446
        c, l = 0, list(range(1,k*n+1,k))
        lt = list(l)
        for i in range(n):
            for j in range(1,k):
                lt[i] *= l[i]+j
            c += lt[i]
        return c

Formula

T(n,k) = Sum_{i=1..n} Gamma(ik+1)/Gamma((i-1)k+1).