A333446 Table T(n,k) read by upward antidiagonals. T(n,k) = Sum_{i=1..n} Product_{j=1..k} (i-1)*k+j.
1, 3, 2, 6, 14, 6, 10, 44, 126, 24, 15, 100, 630, 1704, 120, 21, 190, 1950, 13584, 30360, 720, 28, 322, 4680, 57264, 390720, 666000, 5040, 36, 504, 9576, 173544, 2251200, 14032080, 17302320, 40320, 45, 744, 17556, 428568, 8626800, 110941200, 603353520, 518958720, 362880
Offset: 1
Examples
From _Seiichi Manyama_, Jul 23 2020: (Start) T(3,2) = Sum_{i=1..3} Product_{j=1..2} (i-1)*2+j = 1*2 + 3*4 + 5*6 = 44. Square array begins: 1, 2, 6, 24, 120, 720, ... 3, 14, 126, 1704, 30360, 666000, ... 6, 44, 630, 13584, 390720, 14032080, ... 10, 100, 1950, 57264, 2251200, 110941200, ... 15, 190, 4680, 173544, 8626800, 538459200, ... 21, 322, 9576, 428568, 25727520, 1940869440, ... (End)
Links
- Seiichi Manyama, Antidiagonals n = 1..140, flattened
- Chai Wah Wu, On rearrangement inequalities for multiple sequences, arXiv:2002.10514 [math.CO], 2020.
Crossrefs
Programs
-
Python
def T(n,k): # T(n,k) for A333446 c, l = 0, list(range(1,k*n+1,k)) lt = list(l) for i in range(n): for j in range(1,k): lt[i] *= l[i]+j c += lt[i] return c
Formula
T(n,k) = Sum_{i=1..n} Gamma(ik+1)/Gamma((i-1)k+1).
Comments