A333447 a(n) is the integer corresponding to a bit-string representation of the von Neumann ordinal representation of n, with largest sets listed first, and with '{' represented by the bit 1, '}' represented by the bit zero, and ignoring commas.
2, 12, 228, 62052, 4180832868, 18201642257939067492, 338021701687178649306251838479209230948, 115407456979036362321626052309736660160730393295399201179594209600531491615332
Offset: 0
Examples
A table demonstrating the von Neumann ordinals of the first three integers, their corresponding bit strings, and their sequence values is as follows: n set notation bit string a(n) 0 {} 10 2 1 {{}} 1100 12 2 {{{}}{}} 11100100 228 3 {{{{}}{}}{{}}{}} 1111001001100100 62052
Links
- Kit Scriven, Table of n, a(n) for n = 0..10
- Johann von Neumann, Zur Einführung der transfiniten Zahlen, Acta Litterarum AC Scientiarum Ragiae Universitatis Hungaricae Francisco-Josephinae, 1 (1923), 199-208.
Programs
-
Mathematica
With[{nmax=8},Map[FromDigits[#,2]&,NestList["1"<>#<>StringTake[#,{2,-2}]<>"0"&,"10",nmax]]] (* Paolo Xausa, Nov 21 2023 *)
-
Python
def fBinDigit(n): return 2**(2**(n+1) - 1) def a333447(n): if n==0: return 2 else: prevAsEle = a333447(n-1) * fBinDigit(n-1) restOfEle = a333447(n-1) - fBinDigit(n-1) return fBinDigit(n)+prevAsEle+restOfEle
-
Python
from functools import lru_cache @lru_cache(maxsize=None) def A333447(n): return (1<<((m:=1<
A333447(n-1) if n else 2 # Chai Wah Wu, Nov 23 2023
Formula
a(0) = 2, a(n) = 2^(2^(n+1)-1) - 2^(2^(n)-1) + a(n-1)*(2^(2^(n)-1) + 1).
Comments