A333457 a(n) is the smallest number with exactly n divisors that are Moran numbers, or -1 if no such number exists.
18, 42, 84, 126, 252, 756, 1998, 1596, 2394, 4662, 4788, 9324, 18648, 23940, 46620, 93240, 139860, 177156, 559440, 354312, 708624, 1062936, 885780, 4606056, 1771560, 3543120, 5314680, 10629360, 38974320, 23030280, 46060560, 69090840, 138181680, 506666160
Offset: 1
Examples
Of the divisors of 18 (1, 2, 3, 6, 9, 18), only 18 is a Moran number: 18 / digsum (18) = 2. Of the divisors of 84 (1, 2, 3, 4, 6, 7, 12, 14, 21, 28, 42, 84), only 21, 42 and 84 are Moran numbers: 21 / digsum (21) = 7, 42 / digsum (42) = 7 and 84 / digsum (84) = 7.
Programs
-
Magma
a:=[]; for n in [1..20] do m:=1; while #[d:d in Divisors(m)|d mod &+Intseq(d) eq 0 and IsPrime(d div &+Intseq(d))] ne n do m:=m+1; end while; Append(~a,m); end for; a;
-
Mathematica
numDiv[n_] := DivisorSum[n, 1 &, PrimeQ[#/Plus @@ IntegerDigits[#]] &]; a[n_] := Module[{k = 1}, While[numDiv[k] != n, k++]; k]; Array[a, 20] (* Amiram Eldar, May 11 2020 *)
Comments