A333474 Numbers k such that 2^k + 1 is divisible by the sum of its decimal digits.
0, 1, 2, 3, 9, 98, 135, 200, 665, 1782, 4230, 4521, 6815, 17010, 19635, 30338, 31365, 35427, 49555, 96619, 102897, 157850, 193734, 273050, 393225, 449217, 477333, 483310, 493350, 534465, 661815, 918918, 947925, 1050858, 1114690, 1134945, 1204686, 1350990, 1428105
Offset: 1
Examples
9 is in the sequence, because 2^9 + 1 = 513 is divisible by 5 + 1 + 3.
Programs
-
PARI
isok(k) = my(x=2^k+1); !(x % sumdigits(x)); \\ Michel Marcus, Mar 23 2020
-
Python
print([i for i in range(5000) if (2**i+1)%sum([int(i) for i in str(2**i+1)]) == 0])
Extensions
More terms from Giovanni Resta, Mar 23 2020
Comments