A333475 Numbers k such that S(2^k) is a perfect square, where S(t) is the sum of decimal digits of t.
0, 2, 16, 22, 36, 78, 104, 110, 118, 130, 176, 186, 194, 200, 216, 240, 270, 276, 320, 358, 364, 376, 440, 558, 576, 602, 608, 612, 614, 620, 630, 700, 872, 884, 894, 918, 972, 1144, 1174, 1192, 1216, 1536, 1566, 1610, 1658, 1798, 1882, 2000, 2312, 2630, 2928, 3042, 3540, 3648, 3744, 3750, 3774
Offset: 1
Examples
16 is in the sequence, because S(2^16) = S(65536) = 25 is a perfect square.
Links
- Robert Israel, Table of n, a(n) for n = 1..209
Programs
-
Maple
sd:= n -> convert(convert(n,base,10),`+`): select(t -> issqr(sd(2^t)), [$0..10000]); # Robert Israel, Mar 24 2020
-
PARI
isok(k) = issquare(sumdigits(2^k)); \\ Michel Marcus, Mar 23 2020
Comments