A333485 Heinz numbers of all integer partitions sorted first by sum, then by decreasing length, and finally lexicographically. A code for the Fenner-Loizou tree A228100.
1, 2, 4, 3, 8, 6, 5, 16, 12, 9, 10, 7, 32, 24, 18, 20, 15, 14, 11, 64, 48, 36, 40, 27, 30, 28, 25, 21, 22, 13, 128, 96, 72, 80, 54, 60, 56, 45, 50, 42, 44, 35, 33, 26, 17, 256, 192, 144, 160, 108, 120, 112, 81, 90, 100, 84, 88, 75, 63, 70, 66, 52, 49, 55, 39, 34, 19
Offset: 0
Examples
The sequence of terms together with their prime indices begins: 1: {} 11: {5} 56: {1,1,1,4} 2: {1} 64: {1,1,1,1,1,1} 45: {2,2,3} 4: {1,1} 48: {1,1,1,1,2} 50: {1,3,3} 3: {2} 36: {1,1,2,2} 42: {1,2,4} 8: {1,1,1} 40: {1,1,1,3} 44: {1,1,5} 6: {1,2} 27: {2,2,2} 35: {3,4} 5: {3} 30: {1,2,3} 33: {2,5} 16: {1,1,1,1} 28: {1,1,4} 26: {1,6} 12: {1,1,2} 25: {3,3} 17: {7} 9: {2,2} 21: {2,4} 256: {1,1,1,1,1,1,1,1} 10: {1,3} 22: {1,5} 192: {1,1,1,1,1,1,2} 7: {4} 13: {6} 144: {1,1,1,1,2,2} 32: {1,1,1,1,1} 128: {1,1,1,1,1,1,1} 160: {1,1,1,1,1,3} 24: {1,1,1,2} 96: {1,1,1,1,1,2} 108: {1,1,2,2,2} 18: {1,2,2} 72: {1,1,1,2,2} 120: {1,1,1,2,3} 20: {1,1,3} 80: {1,1,1,1,3} 112: {1,1,1,1,4} 15: {2,3} 54: {1,2,2,2} 81: {2,2,2,2} 14: {1,4} 60: {1,1,2,3} 90: {1,2,2,3} The triangle begins: 1 2 4 3 8 6 5 16 12 9 10 7 32 24 18 20 15 14 11 64 48 36 40 27 30 28 25 21 22 13 128 96 72 80 54 60 56 45 50 42 44 35 33 26 17
Links
- Michael De Vlieger, Table of n, a(n) for n = 0..9295 (rows 0 <= n <= 25, flattened)
- Michael De Vlieger, log-log plot of rows 0 <= n <= 30 of this sequence, highlighting 2^n in red and prime(n) in blue.
- T. I. Fenner, G. Loizou: A binary tree representation and related algorithms for generating integer partitions. The Computer J. 23(4), 332-337 (1980)
- OEIS Wiki, Orderings of partitions
- Wikiversity, Lexicographic and colexicographic order
Crossrefs
Row lengths are A000041.
The constructive version is A228100.
Sorting by increasing length gives A334433.
The version with rows reversed is A334438.
Sum of prime indices is A056239.
Reverse-lexicographically ordered partitions are A080577.
Sorting reversed partitions by Heinz number gives A112798.
Lexicographically ordered partitions are A193073.
Graded Heinz numbers are A215366.
Sorting partitions by Heinz number gives A296150.
If the fine ordering is by Heinz number instead of lexicographic we get A333484.
Programs
-
Mathematica
ralensort[f_,c_]:=If[Length[f]!=Length[c],Length[f]>Length[c],OrderedQ[{f,c}]]; Join@@Table[Times@@Prime/@#&/@Sort[IntegerPartitions[n],ralensort],{n,0,8}]
Extensions
Name extended by Peter Luschny, Dec 23 2020
Comments