A333492 Position of first appearance of n in A271410 (LCM of binary indices).
1, 2, 4, 8, 16, 6, 64, 128, 256, 18, 1024, 12, 4096, 66, 20, 32768, 65536, 258, 262144, 24, 68, 1026, 4194304, 132, 16777216, 4098, 67108864, 72, 268435456, 22, 1073741824, 2147483648, 1028, 65538, 80, 264, 68719476736, 262146, 4100, 144, 1099511627776, 70, 4398046511104
Offset: 1
Keywords
Examples
The sequence together with the corresponding binary expansions and binary indices begins: 1: 1 ~ {1} 2: 10 ~ {2} 4: 100 ~ {3} 8: 1000 ~ {4} 16: 10000 ~ {5} 6: 110 ~ {2,3} 64: 1000000 ~ {7} 128: 10000000 ~ {8} 256: 100000000 ~ {9} 18: 10010 ~ {2,5} 1024: 10000000000 ~ {11} 12: 1100 ~ {3,4} 4096: 1000000000000 ~ {13} 66: 1000010 ~ {2,7} 20: 10100 ~ {3,5} 32768: 1000000000000000 ~ {16} 65536: 10000000000000000 ~ {17} 258: 100000010 ~ {2,9}
Links
- Giovanni Resta, Table of n, a(n) for n = 1..1000
Crossrefs
The version for prime indices is A330225.
The version for standard compositions is A333225.
Let q(k) be the binary indices of k:
- The sum of q(k) is A029931(k).
- The elements of q(k) are row k of A048793.
- The product of q(k) is A096111(k).
- The LCM of q(k) is A271410(k).
- The GCD of q(k) is A326674(k).
GCD of prime indices is A289508.
LCM of prime indices is A290103.
LCM of standard compositions is A333226.
Programs
-
Mathematica
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1]; q=Table[LCM@@bpe[n],{n,10000}]; Table[Position[q,i][[1,1]],{i,First[Split[Union[q],#1+1==#2&]]}]
Extensions
Terms a(23) and beyond from Giovanni Resta, Mar 29 2020
Comments