cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A333570 Number of nonnegative values c such that c^n == -c (mod n).

Original entry on oeis.org

1, 2, 1, 2, 1, 4, 1, 2, 1, 4, 1, 4, 1, 4, 3, 2, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 8, 1, 8, 1, 2, 1, 4, 3, 4, 1, 4, 3, 4, 1, 8, 1, 4, 1, 4, 1, 4, 1, 4, 3, 8, 1, 4, 3, 4, 1, 4, 1, 8, 1, 4, 1, 2, 1, 24, 1, 4, 1, 16, 1, 4, 1, 4, 3, 8, 1, 8, 1, 4, 1, 4, 1, 8, 5, 4, 3, 4, 1, 8, 7, 4, 1, 4, 3
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Mar 27 2020

Keywords

Comments

a(n) is the number of nonnegative bases c < n such that c^n + c == 0 (mod n).
a(2^k) = 2 for k > 0.
a(p^m) = 1 for odd prime p with m >= 0.
Let fy(n) = (the number of values b in Z/nZ such that b^y = b)/(the number of values c in Z/nZ such that -c^y = c) for nonnegative y, then:
f0(n) = A000012(n),
f1(n) = A026741(n),
f2(n) = A000012(n),
1 <= f3(n) <= n,
f4(n) = A000012(n), ...,
1 <= fn(n) = A182816(n)/a(n) <= n, where fn(n) = n for odd noncomposite numbers A006005 and Carmichael numbers A002997.

Crossrefs

Programs

  • Magma
    [#[c: c in [0..n-1] | -c^n mod n eq c]: n in [1..95]];
    
  • PARI
    a(n) = sum(c=1, n, Mod(c, n)^n == -c); \\ Michel Marcus, Mar 27 2020

Formula

a(n) = A182816(n)/r for some odd r.