cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A333576 a(1) = 1; thereafter a(n) = n * uphi(n) / 2.

Original entry on oeis.org

1, 1, 3, 6, 10, 6, 21, 28, 36, 20, 55, 36, 78, 42, 60, 120, 136, 72, 171, 120, 126, 110, 253, 168, 300, 156, 351, 252, 406, 120, 465, 496, 330, 272, 420, 432, 666, 342, 468, 560, 820, 252, 903, 660, 720, 506, 1081, 720, 1176, 600, 816, 936, 1378, 702, 1100, 1176, 1026, 812, 1711, 720
Offset: 1

Views

Author

Ilya Gutkovskiy, Mar 27 2020

Keywords

Comments

The unitary version of A023896.

Crossrefs

Programs

  • Mathematica
    uphi[n_] := Times @@ (#[[1]]^#[[2]] - 1 & /@ FactorInteger[n]); a[1] = 1; a[n_] := n uphi[n]/2; Table[a[n], {n, 1, 60}]
    a[n_] := (n/2) Sum[If[GCD[d, n/d] == 1, (-1)^PrimeNu[n/d] (d + 1), 0], {d, Divisors[n]}]; Table[a[n], {n, 1, 60}]
  • PARI
    a(n) = if(n == 1, 1, my(f = factor(n)); prod(i = 1, #f~, f[i, 1]^f[i, 2] - 1) * n / 2); \\ Amiram Eldar, Sep 21 2024

Formula

a(n) = (n/2) * Sum_{d|n, gcd(d, n/d) = 1} (-1)^omega(n/d) * (d + 1).
Sum_{k=1..n} a(k) ~ c * n^3, where c = (Pi^2/36) * Product_{p prime} (1 - (2*p-1)/p^3) = A353908 * A065464 = 0.117407... . - Amiram Eldar, Sep 21 2024