cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A333615 a(n) is the number of ways to express 2*n+1 as a sum of parts x such that x+2 is an odd prime.

Original entry on oeis.org

1, 2, 3, 4, 7, 10, 13, 20, 26, 34, 48, 61, 78, 103, 129, 162, 206, 256, 314, 391, 479, 579, 711, 859, 1028, 1243, 1485, 1764, 2107, 2497, 2941, 3477, 4092, 4783, 5610, 6557, 7615, 8872, 10303, 11901, 13781, 15910, 18292, 21062, 24196, 27697, 31726, 36287
Offset: 0

Views

Author

Luc Rousseau, Mar 29 2020

Keywords

Examples

			For n = 3, 2*n + 1 = 7. There are 4 partitions of 7 into parts with sizes 1, 3, 5, 9, 11 ... (the odd primes minus 2):
7 = 5 + 1 + 1
7 = 3 + 3 + 1
7 = 3 + 1 + 1 + 1 + 1
7 = 1 + 1 + 1 + 1 + 1 + 1 + 1
So, a(3) = 4.
		

Crossrefs

Cf. A069259 (partitions of 2*n, instead of 2*n+1).
Cf. A101776.

Programs

  • Mathematica
    a[n_] := Module[{p},
      p = Table[Prime[i] - 2, {i, 2, PrimePi[2*n + 3]}];
      Length[IntegerPartitions[2*n + 1, {0, Infinity}, p]]]
    Table[a[n], {n, 0, 60}]
  • PARI
    \\ Slowish:
    partitions_into(n,parts,from=1) = if(!n,1, if(#parts==from, (0==(n%parts[from])), my(s=0); for(i=from,#parts,if(parts[i]<=n, s += partitions_into(n-parts[i],parts,i))); (s)));
    odd_primes_minus2_upto_n_reversed(n) = { my(lista=List([])); forprime(p=3,n+2,listput(lista,p-2)); Vecrev(Vec(lista)); };
    A333615(n) = partitions_into(n+n+1, odd_primes_minus2_upto_n_reversed(n+n+1)); \\ Antti Karttunen, May 09 2020