A333615 a(n) is the number of ways to express 2*n+1 as a sum of parts x such that x+2 is an odd prime.
1, 2, 3, 4, 7, 10, 13, 20, 26, 34, 48, 61, 78, 103, 129, 162, 206, 256, 314, 391, 479, 579, 711, 859, 1028, 1243, 1485, 1764, 2107, 2497, 2941, 3477, 4092, 4783, 5610, 6557, 7615, 8872, 10303, 11901, 13781, 15910, 18292, 21062, 24196, 27697, 31726, 36287
Offset: 0
Keywords
Examples
For n = 3, 2*n + 1 = 7. There are 4 partitions of 7 into parts with sizes 1, 3, 5, 9, 11 ... (the odd primes minus 2): 7 = 5 + 1 + 1 7 = 3 + 3 + 1 7 = 3 + 1 + 1 + 1 + 1 7 = 1 + 1 + 1 + 1 + 1 + 1 + 1 So, a(3) = 4.
Programs
-
Mathematica
a[n_] := Module[{p}, p = Table[Prime[i] - 2, {i, 2, PrimePi[2*n + 3]}]; Length[IntegerPartitions[2*n + 1, {0, Infinity}, p]]] Table[a[n], {n, 0, 60}]
-
PARI
\\ Slowish: partitions_into(n,parts,from=1) = if(!n,1, if(#parts==from, (0==(n%parts[from])), my(s=0); for(i=from,#parts,if(parts[i]<=n, s += partitions_into(n-parts[i],parts,i))); (s))); odd_primes_minus2_upto_n_reversed(n) = { my(lista=List([])); forprime(p=3,n+2,listput(lista,p-2)); Vecrev(Vec(lista)); }; A333615(n) = partitions_into(n+n+1, odd_primes_minus2_upto_n_reversed(n+n+1)); \\ Antti Karttunen, May 09 2020