cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A333619 Numbers that are divisible by the total number of 1's in the Zeckendorf representations of all their divisors (A300837).

Original entry on oeis.org

1, 2, 4, 10, 15, 18, 20, 25, 44, 55, 56, 63, 70, 78, 80, 96, 108, 126, 128, 190, 275, 324, 338, 341, 416, 442, 451, 484, 494, 517, 520, 550, 637, 682, 720, 726, 736, 760, 780, 781, 803, 816, 845, 946, 990, 1088, 1111, 1113, 1199, 1235, 1239, 1311, 1426, 1441
Offset: 1

Views

Author

Amiram Eldar, Mar 29 2020

Keywords

Examples

			4 is a term since its divisors are {1, 2, 4}, their Zeckendorf representations (A014417) are {1, 10, 101}, and their sum of sums of digits is 1 + (1 + 0) + (1 + 0 + 1) = 4 which is a divisor of 4.
		

Crossrefs

Programs

  • Mathematica
    zeckDigSum[n_] := Length[DeleteCases[NestWhileList[# - Fibonacci[Floor[Log[Sqrt[5] * # + 3/2]/Log[GoldenRatio]]] &, n, # > 1 &], 0]];
    zeckDivDigSum[n_] := DivisorSum[n, zeckDigSum[#] &];
    Select[Range[10^3], Divisible[#, zeckDivDigSum[#]] &]

A333622 Numbers k such that k is divisible by the sum of digits of all the divisors of k in factorial base (A319712).

Original entry on oeis.org

1, 2, 3, 4, 14, 22, 24, 27, 33, 36, 52, 72, 91, 92, 100, 135, 150, 187, 221, 231, 310, 323, 448, 481, 493, 494, 589, 663, 708, 754, 816, 884, 893, 897, 946, 1080, 1155, 1159, 1178, 1200, 1357, 1462, 1475, 1518, 1530, 1536, 1550, 1702, 1710, 1836, 1972, 1978, 2231
Offset: 1

Views

Author

Amiram Eldar, Mar 29 2020

Keywords

Examples

			14 is a term since its divisors are {1, 2, 7, 14}, their representations in factorial base (A007623) are {1, 10, 101, 210}, and their sum of sums of digits is 1 + (1 + 0) + (1 + 0 + 1) + (2 + 1 + 0) = 7 which is a divisor of 14.
		

Crossrefs

Programs

  • Mathematica
    fctDigSum[n_] := Module[{s=0, i=2, k=n}, While[k > 0, k = Floor[n/i!]; s = s + (i-1)*k; i++]; n-s]; fctDivDigDum[n_] := DivisorSum[n, fctDigSum[#] &]; Select[Range[10^3], Divisible[#, fctDivDigDum[#]] &] (* after Jean-François Alcover at A034968 *)

A333623 Numbers k such that k is divisible by the sum of digits of all the divisors of k in primorial base (A319715).

Original entry on oeis.org

1, 2, 3, 4, 14, 22, 40, 64, 90, 104, 120, 160, 169, 175, 182, 220, 272, 275, 338, 360, 500, 550, 640, 646, 752, 775, 792, 858, 928, 930, 1120, 1230, 1280, 1332, 1496, 1710, 2050, 2204, 2303, 2368, 2475, 2584, 2632, 2640, 2806, 2838, 2886, 2898, 3002, 3174, 3192
Offset: 1

Views

Author

Amiram Eldar, Mar 29 2020

Keywords

Crossrefs

Programs

  • Mathematica
    max = 5; bases = Prime@Range[max, 1, -1]; nmax = Times @@ bases - 1; primDigSum[n_] := Plus @@ IntegerDigits[n, MixedRadix[bases]]; primDivDigDum[n_] := DivisorSum[n, primDigSum[#] &]; Select[Range[nmax], Divisible[#, primDivDigDum[#]] &]

Formula

14 is a term since its divisors are {1, 2, 7, 14}, their representations in primorial base (A049345) are {1, 10, 101, 210}, and their sum of sums of digits is 1 + (1 + 0) + (1 + 0 + 1) + (2 + 1 + 0) = 7 which is a divisor of 14.

A333621 Numbers that are divisible by the total number of 1's in both the Zeckendorf and the dual Zeckendorf representations of all their divisors (A300837 and A333618).

Original entry on oeis.org

1, 2, 4, 126, 416, 442, 3025, 4588, 9243, 10428, 11900, 15070, 18176, 19436, 20532, 26956, 28582, 32108, 33028, 35278, 35929, 37634, 47678, 50386, 61952, 69254, 74578, 88984, 93534, 95120, 96334, 100326, 102297, 142894, 144039, 145768, 147664, 152817, 163125, 183002
Offset: 1

Views

Author

Amiram Eldar, Mar 29 2020

Keywords

Examples

			126 is a term since A300837(126) = 21 and A333618(126) = 7 are both divisors of 126.
		

Crossrefs

Intersection of A333619 and A333620.

Programs

  • Mathematica
    zeckDigSum[n_] := Length[DeleteCases[NestWhileList[# - Fibonacci[Floor[Log[Sqrt[5] * # + 3/2]/Log[GoldenRatio]]] &, n, # > 1 &], 0]];
    zeckDivDigSum[n_] := DivisorSum[n, zeckDigSum[#] &];
    fibTerms[n_] := Module[{k = Ceiling[Log[GoldenRatio, n*Sqrt[5]]], t = n, fr = {}}, While[k > 1, If[t >= Fibonacci[k], AppendTo[fr, 1]; t = t - Fibonacci[k], AppendTo[fr, 0]]; k--]; fr];
    dualZeckSum[n_] := Module[{v = fibTerms[n]}, nv = Length[v]; i = 1; While[i <= nv - 2, If[v[[i]] == 1 && v[[i + 1]] == 0 && v[[i + 2]] == 0, v[[i]] = 0; v[[i + 1]] = 1; v[[i + 2]] = 1; If[i > 2, i -= 3]]; i++]; i = Position[v, _?(# > 0 &)]; If[i == {}, 0, Total[v[[i[[1, 1]] ;; -1]]]]];
    dualZeckDivDigSum[n_] := DivisorSum[n, dualZeckSum[#] &];
    Select[Range[10^4], Divisible[#, zeckDivDigSum[#]] && Divisible[#, dualZeckDivDigSum[#]] &]
Showing 1-4 of 4 results.