cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A333639 Numbers m such that g(m) = (m * tau(m) / sigma(m)), h(m) = (m * sigma(m)) / tau(m) and k(m) = (tau(m) * sigma(m)) / m are all integers.

Original entry on oeis.org

1, 6, 672, 1638, 30240, 32760, 2178540, 17428320, 23569920, 29410290, 45532800, 714954240, 1379454720, 14182439040, 19209881600, 30600708096, 51001180160, 57575890944, 57629644800, 153003540480, 206166804480, 403031236608, 465036042240, 482476262400
Offset: 1

Views

Author

Jaroslav Krizek, Mar 30 2020

Keywords

Comments

Corresponding sequences of values of integers g(m), h(m) and k(m): {1, 2, 8, 9, 24, 24, 54, 96, 80, 81, 96, 200, ...}, {1, 18, 56448, 298116, 38102400, 44717400, 87889565400, 3164024354400, ...}, {1, 8, 72, 64, 384, 384, 864, 1944, 1280, 1024, 1536, 4608, 2304, 9600, 2916, ...}.

Crossrefs

Subsequence of harmonic numbers (A001599).
Intersection of A001599, A333638 and A071707.

Programs

  • Magma
    [m: m in [1..10^5] | IsIntegral((m * #Divisors(m)) / &+Divisors(m)) and IsIntegral((&+Divisors(m) * m) / #Divisors(m)) and IsIntegral((&+Divisors(m) * #Divisors(m)) / m)]
  • Mathematica
    Select[Range[10^5], Divisible[# * (d = DivisorSigma[0, #]), (s = DivisorSigma[1, #])] && Divisible[# * s, d] && Divisible[d * s, #] &] (* Amiram Eldar, Mar 31 2020 *)