A333641 11-gonal (or hendecagonal) square numbers.
0, 1, 196, 29241, 1755625, 261468900, 38941102225, 2337990844401, 348201795147556, 51858411008887561, 3113535139359330841, 463705205422871375236, 69060571958250748760481, 4146338334574433921200225, 617522713934165528806340100, 91968930524758079223806760025
Offset: 1
Examples
1755625 is a term because 625*(9*625-7)/2 = 1325^2 = 1755625; that means that 1755625 is the 625th 11-gonal number and the square of 1325.
Links
- Index entries for linear recurrences with constant coefficients, signature (1,0,1331714,-1331714,0,-1,1).
Crossrefs
Cf. A106525.
Programs
-
Maple
for k from 0 to 8000000 do d:= k*(9*k-7)/2; if issqr(d) then print(k,sqrt(d),d); else fi; od:
-
Mathematica
Last /@ Solve[(18*x - 7)^2 - 72*y^2 == 49 && x >= 0 && y >= 0 && y < 10^16, {x, y}, Integers] /. Rule -> (#2^2 &) (* Amiram Eldar, Mar 31 2020 *)
-
PARI
concat(0, Vec(-x*(1 + 195*x + 29045*x^2 + 394670*x^3 + 29045*x^4 + 195*x^5 + x^6)/(-1 + x + 1331714*x^3 - 1331714*x^4 - x^6 + x^7) + O(x^20))) \\ Jinyuan Wang, Mar 31 2020
Formula
a(n) = k*(9*k-7)/2 for n > 1, where k = (A106525(4*n-6) + 7)/18. - Jinyuan Wang, Mar 31 2020
Extensions
More terms from Amiram Eldar, Mar 31 2020
Comments