A333682 Number of nonnegative lattice paths from (0,0) to (4n+3,0) such that slopes of adjacent steps differ by one, assuming zero slope before and after the paths.
1, 3, 16, 119, 1070, 10751, 116287, 1326581, 15756587, 193181910, 2429921124, 31216684816, 408198225495, 5418728779290, 72871393962150, 991102308239835, 13613940451015378, 188650695857473559, 2634681336798911129, 37054660535787380825, 524449965598846642847
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..100
- Alois P. Heinz, Animation of a(3) = 119 paths
- Alois P. Heinz, Plot of a(3) = 119 paths
- Alois P. Heinz, Plot of a(4) = 1070 paths
- Alois P. Heinz, Plot of a(5) = 10751 paths
Programs
-
Maple
b:= proc(x, y, t) option remember; `if`(x=0, 1, add(`if`(j=t, 0, b(x-1, y+j, j)), j=max(t-1, -y)..min(x*(x-1)/2-y, t+1))) end: a:= n-> b(4*n+3, 0$2): seq(a(n), n=0..23);
Comments