cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A333711 Number of permutations of [n] such that the product of the first k elements and the product of the last k elements are multiples of k! for all k in [n].

Original entry on oeis.org

1, 1, 2, 2, 8, 4, 32, 4, 96, 244, 1400, 20, 3988, 12, 256, 1328, 3107082, 7900, 4352004, 2676, 752280, 4710724, 23591664, 672, 79424164, 51627164, 4705224, 802988332, 25488756038104, 47736592, 1706618983956, 826828
Offset: 0

Views

Author

Alois P. Heinz, Apr 09 2020

Keywords

Examples

			a(4) = 8: 1234, 1432, 2134, 2314, 2341, 4132, 4312, 4321.
a(5) = 4: 12345, 14325, 52341, 54321.
a(7) = 4: 1234567, 1654327, 7234561, 7654321.
a(13) = 12: 123456789(10)(11)(12)(13), 143256789(10)(11)(12)(13), 143(10)987652(11)(12)(13), 1(12)(11)256789(10)34(13), 1(12)(11)(10)98765234(13), 1(12)(11)(10)98765432(13), (13)23456789(10)(11)(12)1, (13)43256789(10)(11)(12)1, (13)43(10)987652(11)(12)1, (13)(12)(11)256789(10)341, (13)(12)(11)(10)987652341, (13)(12)(11)(10)987654321.
		

Crossrefs

Programs

  • Maple
    b:= proc(s, n) option remember; (m-> `if`(m=0, 1, `if`(irem(
          mul(h, h=({$1..n} minus s)), (n-m)!)=0 and irem(mul(h,
          h=s), m!)=0, add(b(s minus {j}, n), j=s), 0)))(nops(s))
        end:
    a:= n-> b({$1..n}, n):
    seq(a(n), n=0..17);
  • Mathematica
    b[s_, n_] := b[s, n] = With[{m = Length[s]}, If[m == 0, 1, If[Mod[ Product[h, {h, Range[n] ~Complement~ s}], (n-m)!] == 0 && Mod[Times@@s, m!] == 0, Sum[b[s ~Complement~ {j}, n], {j, s}], 0]]];
    a[n_] := b[Range[n], n];
    Table[Print[n, " ", a[n]]; a[n], {n, 0, 27}] (* Jean-François Alcover, Nov 01 2021, after Alois P. Heinz *)