cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A333733 Array read by antidiagonals: T(n,k) is the number of non-isomorphic n X n nonnegative integer matrices with all row and column sums equal to k up to permutations of rows and columns.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 3, 1, 1, 1, 1, 3, 5, 5, 1, 1, 1, 1, 3, 9, 12, 7, 1, 1, 1, 1, 4, 13, 43, 31, 11, 1, 1, 1, 1, 4, 22, 106, 264, 103, 15, 1, 1, 1, 1, 5, 30, 321, 1856, 2804, 383, 22, 1, 1, 1, 1, 5, 45, 787, 12703, 65481, 44524, 1731, 30, 1, 1
Offset: 0

Views

Author

Andrew Howroyd, Apr 04 2020

Keywords

Comments

Terms may be computed without generating each matrix by enumerating the number of matrices by column sum sequence using dynamic programming. A PARI program showing this technique for the labeled case is given in A257493. Burnside's lemma can be used to extend this method to the unlabeled case.

Examples

			Array begins:
=======================================================
n\k | 0 1  2   3     4       5         6          7
----+--------------------------------------------------
  0 | 1 1  1   1     1       1         1          1 ...
  1 | 1 1  1   1     1       1         1          1 ...
  2 | 1 1  2   2     3       3         4          4 ...
  3 | 1 1  3   5     9      13        22         30 ...
  4 | 1 1  5  12    43     106       321        787 ...
  5 | 1 1  7  31   264    1856     12703      71457 ...
  6 | 1 1 11 103  2804   65481   1217727   16925049 ...
  7 | 1 1 15 383 44524 3925518 224549073 8597641912 ...
  ...
		

Crossrefs

Columns k=0..5 are A000012, A000012, A000041, A232215, A232216, A333736.
Main diagonal is A333734.

A377060 Array read by antidiagonals: T(n,k) is the number of inequivalent n X k nonnegative integer matrices with all column sums n and row sums k up to permutation of rows and columns.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 3, 5, 3, 1, 1, 1, 1, 3, 9, 9, 3, 1, 1, 1, 1, 4, 14, 43, 14, 4, 1, 1, 1, 1, 4, 28, 147, 147, 28, 4, 1, 1, 1, 1, 5, 44, 661, 1856, 661, 44, 5, 1, 1, 1, 1, 5, 73, 2649, 25888, 25888, 2649, 73, 5, 1, 1
Offset: 0

Views

Author

Andrew Howroyd, Oct 14 2024

Keywords

Comments

Terms may be computed without generating each matrix by enumerating the number of matrices by column sum sequence using dynamic programming. A PARI program showing this technique for the labeled case is given in A333901. Burnside's lemma can be used to extend this method to the unlabeled case. This seems to require looping over partitions for both rows and columns.

Examples

			Array begins:
==================================================
n\k | 0 1 2  3    4      5        6          7 ...
----+---------------------------------------------
  0 | 1 1 1  1    1      1        1          1 ...
  1 | 1 1 1  1    1      1        1          1 ...
  2 | 1 1 2  2    3      3        4          4 ...
  3 | 1 1 2  5    9     14       28         44 ...
  4 | 1 1 3  9   43    147      661       2649 ...
  5 | 1 1 3 14  147   1856    25888     346691 ...
  6 | 1 1 4 28  661  25888  1217727   55138002 ...
  7 | 1 1 4 44 2649 346691 55138002 8597641912 ...
  ...
		

Crossrefs

Main diagonal is A333734.
Columns k=0..4 are A000012, A000012, A008619, A377061, A377062.

Formula

T(n,k) = T(k,n).
Showing 1-2 of 2 results.