A333770 Smallest palindromic number >= 3^n.
1, 3, 9, 33, 88, 252, 737, 2222, 6666, 19691, 59095, 177771, 532235, 1594951, 4783874, 14355341, 43055034, 129141921, 387424783, 1162332611, 3486886843, 10460406401, 31381118313, 94143234149, 282429924282, 847288882748
Offset: 0
Examples
a(10) = 59095, because 3^10 = 59049 and 59095 is the smallest palindromic number >= 59049.
Links
- Robert Israel, Table of n, a(n) for n = 0..2093
Programs
-
Maple
digrev:= proc(n) local L,i; L:= convert(n,base,10); add(L[-i]*10^(i-1),i=1..nops(L)) end proc: f:= proc(n) local d,x,y,t; d:= ilog10(n)+1; if d::even then x:= floor(n/10^(d/2)); t:= x*10^(d/2)+digrev(x); if t >= n then return t fi; (x+1)*10^(d/2)+digrev(x+1); else x:= floor(n/10^((d-1)/2)); t:= x*10^((d-1)/2)+digrev(floor(x/10)); if t >= n then return t fi; y:= x mod 10; if y < 9 then return t + 10^((d-1)/2) fi; x:= x+1; x*10^((d-1)/2)+digrev(floor(x/10)); fi end proc: seq(f(3^i),i=0..30); # Robert Israel, May 04 2020
-
PARI
a(n) = for(k=3^n, oo, if(Vecrev(v=digits(k))==v, return(k)));