A333787 Fully multiplicative with a(2) = 2 and a(p) = p-1 for odd primes p.
1, 2, 2, 4, 4, 4, 6, 8, 4, 8, 10, 8, 12, 12, 8, 16, 16, 8, 18, 16, 12, 20, 22, 16, 16, 24, 8, 24, 28, 16, 30, 32, 20, 32, 24, 16, 36, 36, 24, 32, 40, 24, 42, 40, 16, 44, 46, 32, 36, 32, 32, 48, 52, 16, 40, 48, 36, 56, 58, 32, 60, 60, 24, 64, 48, 40, 66, 64, 44, 48, 70, 32, 72, 72, 32, 72, 60, 48, 78, 64, 16, 80, 82, 48, 64
Offset: 1
Links
- Antti Karttunen, Table of n, a(n) for n = 1..16384
Programs
-
Mathematica
Array[If[# == 1, 1, Apply[Times, FactorInteger[#] /. {p_Integer, e_Integer} :> If[p == 2, 2, p - 1]^e]] &, 85] (* Michael De Vlieger, Apr 15 2020 *)
-
PARI
A333787(n) = { my(f=factor(n)); for(i=1,#f~,f[i,1] -= (f[i,1]%2)); factorback(f); };
Formula
Multiplicative with a(p^e) = (p-A000035(p))^e.
Sum_{k=1..n} a(k) ~ c * n^2, where c = Pi^4/(210*zeta(3)) = (3/4) * A068468 = 0.385882... . - Amiram Eldar, Nov 10 2022