cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A333806 Number of distinct prime divisors of n that are < sqrt(n).

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 2, 0, 1, 1, 1, 0, 2, 0, 1, 1, 1, 0, 2, 0, 1, 1, 1, 0, 3, 0, 1, 1, 1, 1, 2, 0, 1, 1, 2, 0, 2, 0, 1, 2, 1, 0, 2, 0, 2, 1, 1, 0, 2, 1, 2, 1, 1, 0, 3, 0, 1, 2, 1, 1, 2, 0, 1, 1, 3, 0, 2, 0, 1, 2, 1, 1, 2, 0, 2, 1, 1, 0, 3, 1, 1, 1, 1, 0, 3
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 05 2020

Keywords

Comments

a(n) = 0 if and only if n = p^k where p is prime and k is 0, 1, or 2. - Charles R Greathouse IV, Apr 07 2020

Crossrefs

Programs

  • Maple
    N:= 100: # for a(1)..a(N)
    V:= Vector(N):
    p:= 1:
    do
      p:= nextprime(p);
      if p^2 >= N then break fi;
      L:= [seq(p*k,k=p+1..N/p)];
      V[L]:= V[L]+~1
    od:
    convert(V,list); # Robert Israel, Apr 07 2020
  • Mathematica
    Table[DivisorSum[n, 1 &, # < Sqrt[n] && PrimeQ[#] &], {n, 1, 90}]
    nmax = 90; CoefficientList[Series[Sum[x^(Prime[k] (Prime[k] + 1))/(1 - x^Prime[k]), {k, 1, nmax}], {x, 0, nmax}], x] // Rest
  • PARI
    a(n)=my(f=factor(n)[,1]); sum(i=1,#f, f[i]^2Charles R Greathouse IV, Apr 07 2020

Formula

G.f.: Sum_{k>=1} x^(prime(k)*(prime(k) + 1)) / (1 - x^prime(k)).
a(k*n) >= a(n) for k > 0. a(n^e) = A001221(n) for e > 2. - Richard Peterson, Dec 19 2024

A333807 Sum of odd divisors of n that are < sqrt(n).

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 4, 1, 1, 4, 1, 1, 4, 1, 1, 4, 1, 1, 4, 1, 1, 9, 1, 1, 4, 1, 6, 4, 1, 1, 4, 6, 1, 4, 1, 1, 9, 1, 1, 4, 1, 6, 4, 1, 1, 4, 6, 8, 4, 1, 1, 9, 1, 1, 11, 1, 6, 4, 1, 1, 4, 13, 1, 4, 1, 1, 9, 1, 8, 4, 1, 6, 4, 1, 1, 11, 6, 1, 4, 1, 1, 18
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 05 2020

Keywords

Crossrefs

Programs

  • Mathematica
    Table[DivisorSum[n, # &, # < Sqrt[n] && OddQ[#] &], {n, 1, 90}]
    nmax = 90; CoefficientList[Series[Sum[(2 k - 1) x^(2 k (2 k - 1))/(1 - x^(2 k - 1)), {k, 1, nmax}], {x, 0, nmax}], x] // Rest

Formula

G.f.: Sum_{k>=1} (2*k - 1) * x^(2*k*(2*k - 1)) / (1 - x^(2*k - 1)).

A347157 Sum of cubes of distinct prime divisors of n that are < sqrt(n).

Original entry on oeis.org

0, 0, 0, 0, 0, 8, 0, 8, 0, 8, 0, 35, 0, 8, 27, 8, 0, 35, 0, 8, 27, 8, 0, 35, 0, 8, 27, 8, 0, 160, 0, 8, 27, 8, 125, 35, 0, 8, 27, 133, 0, 35, 0, 8, 152, 8, 0, 35, 0, 133, 27, 8, 0, 35, 125, 351, 27, 8, 0, 160, 0, 8, 370, 8, 125, 35, 0, 8, 27, 476, 0, 35, 0, 8, 152
Offset: 1

Views

Author

Ilya Gutkovskiy, Aug 20 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Table[DivisorSum[n, #^3 &, # < Sqrt[n] && PrimeQ[#] &], {n, 1, 75}]
    nmax = 75; CoefficientList[Series[Sum[Prime[k]^3 x^(Prime[k] (Prime[k] + 1))/(1 - x^Prime[k]), {k, 1, nmax}], {x, 0, nmax}], x] // Rest

Formula

G.f.: Sum_{k>=1} prime(k)^3 * x^(prime(k)*(prime(k) + 1)) / (1 - x^prime(k)).

A347158 Sum of 4th powers of distinct prime divisors of n that are < sqrt(n).

Original entry on oeis.org

0, 0, 0, 0, 0, 16, 0, 16, 0, 16, 0, 97, 0, 16, 81, 16, 0, 97, 0, 16, 81, 16, 0, 97, 0, 16, 81, 16, 0, 722, 0, 16, 81, 16, 625, 97, 0, 16, 81, 641, 0, 97, 0, 16, 706, 16, 0, 97, 0, 641, 81, 16, 0, 97, 625, 2417, 81, 16, 0, 722, 0, 16, 2482, 16, 625, 97, 0, 16, 81, 3042
Offset: 1

Views

Author

Ilya Gutkovskiy, Aug 20 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Table[DivisorSum[n, #^4 &, # < Sqrt[n] && PrimeQ[#] &], {n, 1, 70}]
    nmax = 70; CoefficientList[Series[Sum[Prime[k]^4 x^(Prime[k] (Prime[k] + 1))/(1 - x^Prime[k]), {k, 1, nmax}], {x, 0, nmax}], x] // Rest

Formula

G.f.: Sum_{k>=1} prime(k)^4 * x^(prime(k)*(prime(k) + 1)) / (1 - x^prime(k)).

A347156 Sum of squares of distinct prime divisors of n that are < sqrt(n).

Original entry on oeis.org

0, 0, 0, 0, 0, 4, 0, 4, 0, 4, 0, 13, 0, 4, 9, 4, 0, 13, 0, 4, 9, 4, 0, 13, 0, 4, 9, 4, 0, 38, 0, 4, 9, 4, 25, 13, 0, 4, 9, 29, 0, 13, 0, 4, 34, 4, 0, 13, 0, 29, 9, 4, 0, 13, 25, 53, 9, 4, 0, 38, 0, 4, 58, 4, 25, 13, 0, 4, 9, 78, 0, 13, 0, 4, 34, 4, 49, 13, 0, 29
Offset: 1

Views

Author

Ilya Gutkovskiy, Aug 20 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Table[DivisorSum[n, #^2 &, # < Sqrt[n] && PrimeQ[#] &], {n, 1, 80}]
    nmax = 80; CoefficientList[Series[Sum[Prime[k]^2 x^(Prime[k] (Prime[k] + 1))/(1 - x^Prime[k]), {k, 1, nmax}], {x, 0, nmax}], x] // Rest

Formula

G.f.: Sum_{k>=1} prime(k)^2 * x^(prime(k)*(prime(k) + 1)) / (1 - x^prime(k)).
Showing 1-5 of 5 results.