A333813 a(n) = 2^(1 + floor(n*log_2(3))) - (3^n + 1).
0, 0, 6, 4, 46, 12, 294, 1908, 1630, 13084, 6486, 84996, 517134, 502828, 3605638, 2428308, 24062142, 5077564, 149450422, 985222180, 808182894, 6719515980, 2978678758, 43295774644, 267326277406, 252223018332, 1856180682774, 1170495537220
Offset: 0
Keywords
Examples
a(0) = 2^(1 + floor(0*log_2(3))) - (3^0 + 1) = 0; a(4) = 2^(1 + floor(4*log_2(3))) - (3^4 + 1) = 46.
Crossrefs
Programs
-
Mathematica
Table[2^(1+Floor[n Log2[3]])-(3^n+1),{n,0,30}] (* Harvey P. Dale, Sep 04 2023 *)
Formula
a(n) = 2^(1 + floor(n*log_2(3))) - (3^n + 1).
Comments