cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A333813 a(n) = 2^(1 + floor(n*log_2(3))) - (3^n + 1).

Original entry on oeis.org

0, 0, 6, 4, 46, 12, 294, 1908, 1630, 13084, 6486, 84996, 517134, 502828, 3605638, 2428308, 24062142, 5077564, 149450422, 985222180, 808182894, 6719515980, 2978678758, 43295774644, 267326277406, 252223018332, 1856180682774, 1170495537220
Offset: 0

Views

Author

Ctibor O. Zizka, Apr 06 2020

Keywords

Comments

For integers X, Y, let a(n) = (X^(t+1) - 1) / (X - 1) - Y^n, where t = floor(n*log_X(Y)) . This sequence is for X = 2, Y = 3.

Examples

			a(0) = 2^(1 + floor(0*log_2(3))) - (3^0 + 1) = 0; a(4) = 2^(1 + floor(4*log_2(3))) - (3^4 + 1) = 46.
		

Crossrefs

Examples for integers X = Y from {2, 3, 4, 5, 6, 7, 8, 9, 10} are A000225, A003462, A002450, A003463, A003464, A023000, A023001, A002452, A002275. Examples for X = 2, Y = 4 are A024036; for X = 2, Y = 8, A024088; and for X = 3, Y = 9, A191681.

Programs

  • Mathematica
    Table[2^(1+Floor[n Log2[3]])-(3^n+1),{n,0,30}] (* Harvey P. Dale, Sep 04 2023 *)

Formula

a(n) = 2^(1 + floor(n*log_2(3))) - (3^n + 1).