cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A333816 Number of ways to write n as the difference of two hexagonal numbers.

Original entry on oeis.org

1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 2, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 2, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 2, 1, 1, 0, 1, 1, 1, 1
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 06 2020

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 92; CoefficientList[Series[Sum[x^(k (2 k - 1))/(1 - x^(4 k)), {k, 1, nmax}], {x, 0, nmax}], x] // Rest
    nmax = 92; Rest[CoefficientList[Series[Sum[x^(k*(2*k - 1))/(1 - x^(4*k)), {k, 1, 1 + Sqrt[nmax/2]}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Apr 19 2020 *)

Formula

G.f.: Sum_{k>=1} x^(k*(2*k - 1)) / (1 - x^(4*k)).
G.f.: Sum_{i>=0} Sum_{j>=i} Product_{k=i..j} x^(4*k + 1).