cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A333851 Irregular triangle read by rows: T(n, k) = gcd(A333850(n, k), 2*A333855(n)), for n >= 1, and k = 1,2, ..., A135303(A333855(n)).

Original entry on oeis.org

2, 2, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 2, 3, 3, 2, 2, 2, 2, 2, 10, 2, 1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 6, 6, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 14, 38, 2, 2
Offset: 1

Views

Author

Wolfdieter Lang, Jun 08 2020

Keywords

Comments

The length of row n is A135303(A333855(n)) (the B numbers for A333855(n)).

Examples

			The irregular triangle T(n, k) begins (here A(n) = A333855(n)):
n,  A(n) \ k   1     2    3    4   5  6  7  8  9 ...
----------------------------------------------------------------
1,   17:       2     2
2,   31:       1     1    1
3,   33:       1     1
4,   41:       2     2
5,   43:       1     1    1
6,   51:       2     2
7,   57:       3     3
8,   63:       2     2    2
9,   65:       2     2   10    2
10,  73:       1     1    1    1
11,  85:       2     2    2    2
12,  89:       1     1    1    1
13,  91:       2     2    2
14,  93:       2     2    2
15,  97:       2     2
16,  99:       1     1
17, 105:       6     6
18, 109:       2     2    2
19, 113:       2     2    2    2
20, 117:       2     2    2
21, 119:       2     2
22, 123:       2     2
23, 127:       1     1    1    1   1  1  1  1  1
24, 129:       1     1    1    1   1  1
25, 133:       2    14   38
26, 137:       2     2
...
		

Crossrefs

Programs

  • PARI
    RRS(n) = select(x->(((x%2)==1) && (gcd(n, x)==1)), [1..n]);
    isok8(m, n) = my(md = Mod(2, 2*n+1)^m); (md==1) || (md==-1);
    A003558(n) = my(m=1); while(!isok8(m, n) , m++); m;
    B(n) = eulerphi(n)/(2*A003558((n-1)/2));
    fmiss(rrs, qs) = {for (i=1, #rrs, if (! setsearch(qs, rrs[i]), return (rrs[i])););}
    listb(nn) = {my(v=List()); forstep (n=3, nn, 2, my(bn = B(n)); if (bn >= 2, listput(v, n););); Vec(v);}
    pergcd(n) = {my(bn = B(n)); if (bn >= 2, my(vn = vector(bn)); my(q=1, qt = List()); my(p = A003558((n-1)/2)); my(rrs = RRS(n)); for (k=1, bn, my(qp = List()); q = fmiss(rrs, Set(qt)); listput(qp, q); listput(qt, q); for (i=1, p-1, q = abs(n-2*q); listput(qp, q); listput(qt, q);); vn[k] = gcd(vecsum(Vec(qp)), 2*n);); return (vn););}
    listag(nn) = {my(v = listb(nn)); vector(#v, k, pergcd(v[k]));} \\ Michel Marcus, Jun 14 2020

Formula

T(n, k) = gcd(A333850(n, k), 2*A333855(n)), for n >= 1, and k = 1, 2, ..., A135303(A333855(n)) (B numbers >= 2 for A333855(n)).

Extensions

Some incorrect terms were found by Michel Marcus, Jun 11 2010