A333851 Irregular triangle read by rows: T(n, k) = gcd(A333850(n, k), 2*A333855(n)), for n >= 1, and k = 1,2, ..., A135303(A333855(n)).
2, 2, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 2, 3, 3, 2, 2, 2, 2, 2, 10, 2, 1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 6, 6, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 14, 38, 2, 2
Offset: 1
Examples
The irregular triangle T(n, k) begins (here A(n) = A333855(n)): n, A(n) \ k 1 2 3 4 5 6 7 8 9 ... ---------------------------------------------------------------- 1, 17: 2 2 2, 31: 1 1 1 3, 33: 1 1 4, 41: 2 2 5, 43: 1 1 1 6, 51: 2 2 7, 57: 3 3 8, 63: 2 2 2 9, 65: 2 2 10 2 10, 73: 1 1 1 1 11, 85: 2 2 2 2 12, 89: 1 1 1 1 13, 91: 2 2 2 14, 93: 2 2 2 15, 97: 2 2 16, 99: 1 1 17, 105: 6 6 18, 109: 2 2 2 19, 113: 2 2 2 2 20, 117: 2 2 2 21, 119: 2 2 22, 123: 2 2 23, 127: 1 1 1 1 1 1 1 1 1 24, 129: 1 1 1 1 1 1 25, 133: 2 14 38 26, 137: 2 2 ...
Links
- Wolfdieter Lang, On the Equivalence of Three Complete Cyclic Systems of Integers, arXiv:2008.04300 [math.NT], 2020.
Programs
-
PARI
RRS(n) = select(x->(((x%2)==1) && (gcd(n, x)==1)), [1..n]); isok8(m, n) = my(md = Mod(2, 2*n+1)^m); (md==1) || (md==-1); A003558(n) = my(m=1); while(!isok8(m, n) , m++); m; B(n) = eulerphi(n)/(2*A003558((n-1)/2)); fmiss(rrs, qs) = {for (i=1, #rrs, if (! setsearch(qs, rrs[i]), return (rrs[i])););} listb(nn) = {my(v=List()); forstep (n=3, nn, 2, my(bn = B(n)); if (bn >= 2, listput(v, n););); Vec(v);} pergcd(n) = {my(bn = B(n)); if (bn >= 2, my(vn = vector(bn)); my(q=1, qt = List()); my(p = A003558((n-1)/2)); my(rrs = RRS(n)); for (k=1, bn, my(qp = List()); q = fmiss(rrs, Set(qt)); listput(qp, q); listput(qt, q); for (i=1, p-1, q = abs(n-2*q); listput(qp, q); listput(qt, q);); vn[k] = gcd(vecsum(Vec(qp)), 2*n);); return (vn););} listag(nn) = {my(v = listb(nn)); vector(#v, k, pergcd(v[k]));} \\ Michel Marcus, Jun 14 2020
Formula
Extensions
Some incorrect terms were found by Michel Marcus, Jun 11 2010
Comments