A333850 Irregular triangle read by rows: T(n, k) gives the sums of the members of the primitive period of the unsigned Schick sequences for the odd numbers from A333855.
38, 26, 95, 71, 59, 103, 67, 224, 176, 175, 151, 115, 232, 184, 303, 219, 254, 170, 146, 264, 204, 180, 144, 405, 309, 321, 261, 428, 368, 284, 296, 571, 511, 475, 379, 600, 612, 444, 538, 466, 406, 1254, 1050, 763, 727, 732, 516, 996, 1080, 840, 952, 772, 688, 724, 844, 712, 556, 1488, 1392, 1336, 1144
Offset: 1
Examples
The irregular triangle T(n, k) begins (here A(n) = A333855(n)): n, A(n) \ k 1 2 3 4 5 6 7 8 9 ... ------------------------------------------------------------- 1, 17: 38 26 2, 31: 95 71 59 3, 33: 103 67 4, 41: 224 176 5, 43: 175 151 115 6, 51: 232 184 7, 57: 303 219 8, 63: 254 170 146 9, 65: 264 204 180 144 10, 73: 405 309 321 261 11, 85: 428 368 284 296 12, 89: 571 511 475 379 13, 91: 600 612 444 14, 93: 538 466 406 15, 97: 1254 1050 16, 99: 763 727 17, 105: 732 516 18, 109: 996 1080 840 19, 113: 952 772 688 724 20, 117: 844 712 556 21, 119: 1488 1392 22, 123: 1336 1144 23, 127: 637 517 457 469 433 385 385 361 325 24, 129: 649 469 469 385 397 361 25, 133: 1374 1218 1026 28, 137: 2456 2168 ... -------------------------------------------------------------------------- n = 1, N = 17, B(17) = A135303((17-1)/2) = 2. In cycle notation: SBB(17, q0_1) = (1, 15, 13, 9) and SBB(17, q0_2) = (3, 11, 5, 7), with sums T(1, 1) = 1 + 15 + 13 + 9 = 38 and T(1, 2) = 26. (38 + 26 = 64 = A333848(8) .)
References
- Carl Schick, Trigonometrie und unterhaltsame Zahlentheorie, Bokos Druck, Zürich, 2003 (ISBN 3-9522917-0-6). Tables 3.1 to 3.10, for odd p = 3..113 (with gaps), pp. 158-166.
Links
- Gerold Brändli and Tim Beyne, Modified Congruence Modulo n with Half the Amount of Residues, arXiv:1504.02757 [math.NT], 2016.
- Wolfdieter Lang, On the Equivalence of Three Complete Cyclic Systems of Integers, arXiv:2008.04300 [math.NT], 2020.
Programs
-
PARI
RRS(n) = select(x->(((x%2)==1) && (gcd(n, x)==1)), [1..n]); isok8(m, n) = my(md = Mod(2, 2*n+1)^m); (md==1) || (md==-1); A003558(n) = my(m=1); while(!isok8(m, n) , m++); m; B(n) = eulerphi(n)/(2*A003558((n-1)/2)); fmiss(rrs, qs) = {for (i=1, #rrs, if (! setsearch(qs, rrs[i]), return (rrs[i])););} listb(nn) = {my(v=List()); forstep (n=3, nn, 2, my(bn = B(n)); if (bn >= 2, listput(v, n););); Vec(v);} persum(n) = {my(bn = B(n)); if (bn >= 2, my(vn = vector(bn)); my(q=1, qt = List()); my(p = A003558((n-1)/2)); my(rrs = RRS(n)); for (k=1, bn, my(qp = List()); q = fmiss(rrs, Set(qt)); listput(qp, q); listput(qt, q); for (i=1, p-1, q = abs(n-2*q); listput(qp, q); listput(qt, q);); vn[k] = vecsum(Vec(qp));); return (vn););} listas(nn) = {my(v = listb(nn)); vector(#v, k, persum(v[k]));} \\ Michel Marcus, Jun 13 2020
Formula
Extensions
Some terms were corrected by Michel Marcus, Jun 11 2010
Comments