A333857 Positive odd numbers b with an unequal number of odd and even elements of the restricted residue system of the mod* congruence of Brändli and Beyne (numbers b ordered increasingly).
1, 21, 33, 57, 63, 69, 77, 93, 99, 129, 133, 141, 147, 161, 171, 177, 189, 201, 207, 209, 213, 217, 231, 237, 249, 253, 279, 297, 301, 309, 321, 329, 341, 363, 381, 387, 393, 399, 413, 417, 423, 437, 441, 453, 469, 473, 483, 489, 497, 501, 513, 517, 531, 537, 539, 553, 567, 573, 581, 589, 597
Offset: 1
Keywords
Links
- Gerold Brändli and Tim Beyne, Modified Congruence Modulo n with Half the Amount of Residues, arXiv:1504.02757 [math.NT], 2016.
Programs
-
PARI
RRS(n) = select(x->gcd(n, x)==1, [1..n]); \\ A038566 RRSstar(n) = if (n<=2, [n-1], my(r=RRS(n)); Vec(r, #r/2)); \\ A333856 isok(k) = if ((k%2) && ((k==1) || denominator(eulerphi(k)/4)==1), my(v=RRSstar(k)); #select(x->((x%2) == 1), v) != #select(x->((x%2) == 0), v)); \\ Michel Marcus, Sep 17 2023
Formula
This sequence gives the increasingly ordered positive odd integers b from A327922 such that the reduced residue system RRS*(b) does not have the same number of odd and even elements, for n >= 1, The odd number b is then called unbalanced.
Extensions
More terms from Michel Marcus, Sep 17 2023
Comments