A333885 Number of triples (i,j,k) with 1 <= i < j < k <= n such that i divides j divides k.
0, 0, 0, 1, 1, 3, 3, 6, 7, 9, 9, 16, 16, 18, 20, 26, 26, 33, 33, 40, 42, 44, 44, 59, 60, 62, 65, 72, 72, 84, 84, 94, 96, 98, 100, 119, 119, 121, 123, 138, 138, 150, 150, 157, 164, 166, 166, 192, 193, 200, 202, 209, 209, 224, 226, 241, 243, 245, 245, 276, 276
Offset: 1
Keywords
Examples
The a(4) = 1 triple is (1,2,4). The a(8) = 6 triples are (1,2,4), (1,2,6), (1,2,8), (1,3,6), (1,4,8), (2,4,8).
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..10000
Programs
-
Maple
with(numtheory): a:= proc(n) option remember; `if`(n=0, 0, a(n-1)+ add(tau(d)-1, d=divisors(n) minus {n})) end: seq(a(n), n=1..80); # Alois P. Heinz, Apr 09 2020
-
Mathematica
a[n_] := a[n] = If[n == 0, 0, a[n - 1] + Sum[DivisorSigma[0, d] - 1, {d, Most @ Divisors[n]}]]; Array[a, 80] (* Jean-François Alcover, Nov 27 2020, after Alois P. Heinz *)
-
Python
an = len([(i,j,k) for i in range(1,n+1) for j in range(i+1,n+1) for k in range(j+1,n+1) if j%i==0 and k%j==0])
Formula
a(n) = Sum_{m=1..n} Sum_{d|m, dAlois P. Heinz, Apr 09 2020