cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A333893 Array read by antidiagonals: T(n,k) is the number of unlabeled loopless multigraphs with n nodes of degree k or less.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 1, 4, 5, 3, 1, 1, 1, 5, 8, 10, 3, 1, 1, 1, 6, 14, 26, 16, 4, 1, 1, 1, 7, 20, 61, 60, 29, 4, 1, 1, 1, 8, 30, 128, 243, 184, 45, 5, 1, 1, 1, 9, 40, 254, 800, 1228, 488, 75, 5, 1, 1, 1, 10, 55, 467, 2518, 7252, 6684, 1509, 115, 6, 1
Offset: 0

Views

Author

Andrew Howroyd, Apr 08 2020

Keywords

Comments

T(n,k) is the number of non-isomorphic n X n nonnegative integer symmetric matrices with all row and column sums equal to k and isomorphism being up to simultaneous permutation of rows and columns. The case that allows independent permutations of rows and columns is covered by A333737.
Terms may be computed without generating each graph by enumerating the graphs by degree sequence using dynamic programming. A PARI program showing this technique for the labeled case is given in A188403. Burnside's lemma as applied in A192517 can be used to extend this method to the unlabeled case.

Examples

			Array begins:
==============================================
n\k | 0 1  2   3    4     5      6       7
----+-----------------------------------------
  0 | 1 1  1   1    1     1      1       1 ...
  1 | 1 1  1   1    1     1      1       1 ...
  2 | 1 2  3   4    5     6      7       8 ...
  3 | 1 2  5   8   14    20     30      40 ...
  4 | 1 3 10  26   61   128    254     467 ...
  5 | 1 3 16  60  243   800   2518    6999 ...
  6 | 1 4 29 184 1228  7252  38194  175369 ...
  7 | 1 4 45 488 6684 78063 772243 6254652 ...
  ...
		

Crossrefs

Rows n=0..4 are A000012, A000012, A000027(n+1), A006918(n+1), A333897.
Columns k=0..5 are A000012, A008619, A000990, A333894, A333895, A333896.