cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A333919 Perimeters of integer-sided triangles with side lengths a <= b <= c whose altitude from side b is an integer.

Original entry on oeis.org

12, 24, 30, 36, 40, 42, 48, 56, 60, 70, 72, 78, 80, 84, 90, 96, 104, 108, 110, 112, 114, 120, 126, 132, 136, 140, 144, 150, 154, 156, 160, 162, 168, 176, 180, 182, 186, 192, 198, 200, 204, 208, 210, 216, 220, 222, 224, 228, 230, 232, 234, 238, 240, 250, 252
Offset: 1

Views

Author

Wesley Ivan Hurt, Apr 09 2020

Keywords

Examples

			12 is in the sequence since it is the perimeter of the triangle [3,4,5], whose altitude from 4 (its "middle" side) is 3 (an integer).
24 is in the sequence since it is the perimeter of the triangle [6,8,10], whose altitude from 8 (its "middle" side) is 6 (an integer).
60 is in the sequence since it is the perimeter of the triangles [10,24,26] and [15,20,25], whose altitudes (from their "middle" sides) are 10 and 15 respectively (both integers).
		

Crossrefs

Programs

  • Mathematica
    Flatten[Table[If[Sum[Sum[(1 - Ceiling[2*Sqrt[(n/2) (n/2 - i) (n/2 - k) (n/2 - (n - i - k))]/i] + Floor[2*Sqrt[(n/2) (n/2 - i) (n/2 - k) (n/2 - (n - i - k))]/i]) Sign[Floor[(i + k)/(n - i - k + 1)]], {i, k, Floor[(n - k)/2]}], {k, Floor[n/3]}] > 0, n, {}], {n, 100}]]