A333930 Larger of recursive amicable numbers pair: numbers m < k such that m = s(k) and k = s(m), where s(k) = A333926(k) - k is the sum of proper recursive divisors of k.
284, 378, 2924, 4584, 5564, 16632, 16728, 28752, 30912, 53692, 76084, 69552, 87633, 124155, 139815, 179118, 168730, 225096, 202444, 256338, 245904, 266568, 365084, 389924, 320016, 430402, 391656, 353616, 387720, 393528, 486178, 525915, 555216, 642720, 814698, 682896
Offset: 1
Keywords
Examples
284 is a terms since A333926(284) - 284 = 220 and A333926(220) - 220 = 284.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..1000
Crossrefs
Programs
-
Mathematica
recDivQ[n_, 1] = True; recDivQ[n_, d_] := recDivQ[n, d] = Divisible[n, d] && AllTrue[FactorInteger[d], recDivQ[IntegerExponent[n, First[#]], Last[#]] &]; recDivs[n_] := Select[Divisors[n], recDivQ[n, #] &]; f[p_, e_] := 1 + Total[p^recDivs[e]]; recDivSum[1] = 1; recDivSum[n_] := Times @@ (f @@@ FactorInteger[n]); s[n_] := recDivSum[n] - n; seq = {}; Do[m = s[n]; If[m > n && s[m] == n, AppendTo[seq, m]], {n, 1, 10^5}]; seq
Comments