cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A333929 Lesser of recursive amicable numbers pair: numbers m < k such that m = s(k) and k = s(m), where s(k) = A333926(k) - k is the sum of proper recursive divisors of k.

Original entry on oeis.org

220, 366, 2620, 3864, 5020, 16104, 16536, 26448, 29760, 43524, 63020, 67344, 69615, 100485, 122265, 142290, 142310, 196248, 196724, 198990, 239856, 240312, 280540, 308620, 309264, 319550, 326424, 341904, 348840, 366792, 469028, 522405, 537744, 580320, 647190, 661776
Offset: 1

Views

Author

Amiram Eldar, Apr 10 2020

Keywords

Comments

The larger counterparts are in A333930.

Examples

			220 is a terms since A333926(220) - 220 = 284 and A333926(284) - 284 = 220.
		

Crossrefs

Analogous sequences: A002025, A002952 (unitary), A126165 (exponential), A126169 (infinitary), A292980 (bi-unitary).

Programs

  • Mathematica
    recDivQ[n_, 1] = True; recDivQ[n_, d_] := recDivQ[n, d] = Divisible[n, d] && AllTrue[FactorInteger[d], recDivQ[IntegerExponent[n, First[#]], Last[#]] &]; recDivs[n_] := Select[Divisors[n], recDivQ[n, #] &]; f[p_, e_] := 1 + Total[p^recDivs[e]]; recDivSum[1] = 1; recDivSum[n_] := Times @@ (f @@@ FactorInteger[n]); s[n_] := recDivSum[n] - n; seq = {}; Do[m = s[n]; If[m > n && s[m] == n, AppendTo[seq, n]], {n, 1, 10^5}]; seq
Showing 1-1 of 1 results.