A333952 Recursively highly composite numbers: numbers m such that A067824(m) > A067824(k) for all k < m.
1, 2, 4, 6, 8, 12, 24, 36, 48, 72, 96, 120, 144, 192, 240, 288, 360, 432, 480, 576, 720, 864, 960, 1152, 1440, 1728, 1920, 2160, 2304, 2880, 3456, 4320, 5760, 6912, 8640, 11520, 17280, 23040, 25920, 30240, 34560, 46080, 51840, 60480, 69120, 86400, 103680, 120960
Offset: 1
Keywords
Examples
The first 6 terms of A067824 are 1, 2, 2, 4, 2, 6. The record values occur at 1, 2, 4, 6, the first 4 terms of this sequence.
Links
- David A. Corneth, Table of n, a(n) for n = 1..291 (first 120 terms from Amiram Eldar)
- Thomas Fink, Recursively divisible numbers, arXiv:1912.07979 [math.NT], 2019. See section 5.
- T. M. A. Fink, Number of ordered factorizations and recursive divisors, arXiv:2307.16691 [math.NT], 2023.
Programs
-
Mathematica
d[1] = 1; d[n_] := d[n] = 1 + DivisorSum[n, d[#] &, # < n &]; seq={}; dm = 0; Do[d1 = d[n]; If[d1 > dm, dm = d1; AppendTo[seq, n]], {n, 1, 10^4}]; seq
Comments