A333967 Subsequence of A071395. The extra constraint is m is not a term if m*q/p is abundant where prime p|m and q is the least prime larger than p.
70, 2002, 3230, 4030, 5830, 8415, 8925, 20482, 32445, 45885, 51765, 83265, 107198, 131054, 133042, 178486, 206770, 253270, 253946, 258970, 270470, 310930, 330310, 334305, 362710, 442365, 474045, 497835, 513890, 544310, 567765, 589095, 592670, 602175, 617265, 631670, 654675
Offset: 1
Keywords
Examples
70 is in the sequence as it's abundant. Its prime factorization is 2 * 5 * 7. Each of 3 * 5 * 7, 2 * 7 * 7 and 2 * 5 * 11 are deficient and no divisor of 70 is in this sequence.
Links
- David A. Corneth, Table of n, a(n) for n = 1..1317
Programs
-
Mathematica
primabQ[n_] := DivisorSigma[1, n] > 2n && AllTrue[Most @ Divisors[n], DivisorSigma[1, #] < 2# &]; seqQ[n_] := Module[{f = FactorInteger[n]}, p = f[[;; , 1]]; e = f[[;; , 2]]; q = NextPrime[p]; AllTrue[n*(q/p), DivisorSigma[1, #] <= 2# &]]; Select[Range[10^5], primabQ[#] && seqQ[#] &] (* Amiram Eldar, Jul 05 2020 *)