cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A334009 Triangle read by rows: T(n, k) = binomial(n + k - 1, 2*k - 1) * 4^(k - 1) * n/k, 1 <= k <= n.

Original entry on oeis.org

1, 4, 4, 9, 24, 16, 16, 80, 128, 64, 25, 200, 560, 640, 256, 36, 420, 1792, 3456, 3072, 1024, 49, 784, 4704, 13440, 19712, 14336, 4096, 64, 1344, 10752, 42240, 90112, 106496, 65536, 16384, 81, 2160, 22176, 114048, 329472, 559104, 552960, 294912, 65536, 100
Offset: 1

Views

Author

Michael Somos, Apr 12 2020

Keywords

Comments

Let P(n, x) := Sum_{k=1..n} T(n, k)*x^k. Then P(n, P(m, x)) = P(n*m, x) for all n and m in Z.
The r=4 case of the Logistic Map is 4*x*(1 - x) = -P(1, -x). The r=2 case leads to A193862.

Examples

			First four rows:
.1
.4...4
.9..24..16
16..80.128..64
		

Crossrefs

Programs

  • Mathematica
    T[ n_, k_] := If[k == 0, 0, Binomial[n + k - 1, 2 k - 1] 4^(k - 1) n / k];
  • PARI
    {T(n, k) = if(k == 0, 0, binomial(n + k - 1, 2*k - 1) * 4^(k - 1) * n/k)};

Formula

P(n, x) = sinh(n * arcsinh(sqrt(x)))^2 = (hypergeom([-n, n], [1/2], -x) - 1)/2 are the row polynomials.
G.f.: Sum_{n, m} T(n, k) * x^k * y^n = x * y * (1 + y) / ((1 - y) * (1 - (2 + 4*x)*y + y^2)).
Row sums are A001108.
T(n, k) = (-1)^n * (-4)^(k-1) * A039598(-k - 1, n - 1) for all n in Z if k<0.
T(n, k) = -(-1)^(n+k) * A123588(n,k) if 1 <= k <= n.