A334017 Table read by antidiagonals upward: T(n,k) is the number of ways to move a chess queen from (1,1) to (n,k) in the first quadrant using only up, right, and diagonal up-left moves.
1, 1, 2, 2, 5, 10, 4, 13, 33, 63, 8, 32, 98, 240, 454, 16, 76, 269, 777, 1871, 3539, 32, 176, 702, 2295, 6420, 15314, 29008, 64, 400, 1768, 6393, 19970, 54758, 129825, 246255, 128, 896, 4336, 17088, 58342, 176971, 478662, 1129967, 2145722, 256, 1984, 10416
Offset: 1
Examples
Table begins: n\k| 1 2 3 4 5 6 7 8 ---+---------------------------------------------------------- 1| 1 2 10 63 454 3539 29008 246255 2| 1 5 33 240 1871 15314 129825 1129967 3| 2 13 98 777 6420 54758 478662 4266102 4| 4 32 269 2295 19970 176971 1593093 14532881 5| 8 76 702 6393 58342 536080 4965056 46345046 6| 16 176 1768 17088 163041 1550809 14765863 140982374 7| 32 400 4336 44280 440602 4332221 42373370 413689403 8| 64 896 10416 111984 1159580 11771312 118190333 1179448443 For example, the T(2,2) = 5 sequences of permissible queen's moves from (1,1) to (2,2) are: (1,1) -> (1,2) -> (2,2), (1,1) -> (2,1) -> (1,2) -> (2,2), (1,1) -> (2,1) -> (2,2), (1,1) -> (2,1) -> (3,1) -> (2,2), and (1,1) -> (3,1) -> (2,2).
Links
- Peter Kagey, Table of n, a(n) for n = 1..10011 (first 141 antidiagonals)
- Peter Kagey, Parity bitmap for first 1024 rows and columns. (Even and odd entries and represented by black and white pixels respectively.)
Comments