A334056 Triangle read by rows: T(n,k) is the number of configurations with exactly k polyomino matchings in a generalized game of memory played on the path of length 3n.
1, 0, 1, 7, 2, 1, 219, 53, 7, 1, 12861, 2296, 226, 16, 1, 1215794, 171785, 13080, 710, 30, 1, 169509845, 19796274, 1228655, 53740, 1835, 50, 1, 32774737463, 3260279603, 170725639, 6250755, 178325, 4137, 77, 1, 8400108766161, 727564783392, 32944247308, 1036855344, 25359670, 507584, 8428, 112, 1
Offset: 0
Examples
The first few rows of T(n,k) are: 1; 0, 1; 7, 2, 1; 219, 53, 7, 1; 12861, 2296, 226, 16, 1; ... For n=2 and k=1 the polyomino must start either on the second vertex of the path, or the third, otherwise the remaining triple will also form a polyomino; thus T(2,1) = 2.
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..1325 (rows 0..50)
- Donovan Young, Linear k-Chord Diagrams, arXiv:2004.06921 [math.CO], 2020. See also J. Int. Seq., Vol. 23 (2020), Article 20.9.1.
Programs
-
Mathematica
CoefficientList[Normal[Series[Sum[y^j*(3*j)!/6^j/j!/(1+y*(1-z))^(3*j+1),{j,0,20}],{y,0,20}]],{y,z}]
-
PARI
T(n,k)={sum(j=0, n-k, (-1)^(n-j-k)*(n+2*j)!/(6^j*j!*(n-j-k)!*k!))} \\ Andrew Howroyd, Apr 16 2020
Formula
G.f.: Sum_{j>=0} (3*j)! * y^j / (j! * 6^j * (1+(1-z)*y)^(3*j+1)).
T(n,k) = Sum_{j=0..n-k} (-1)^(n-j-k)*(n+2*j)!/(6^j*j!*(n-j-k)!*k!). - Andrew Howroyd, Apr 16 2020
Comments