A334059 Triangle read by rows: T(n,k) is the number of perfect matchings on {1, 2, ..., 2n} with k disjoint strings of adjacent short pairs.
1, 0, 1, 1, 2, 0, 5, 8, 2, 0, 36, 49, 19, 1, 0, 329, 414, 180, 22, 0, 0, 3655, 4398, 1986, 344, 12, 0, 0, 47844, 55897, 25722, 5292, 377, 3, 0, 0, 721315, 825056, 384366, 87296, 8746, 246, 0, 0, 0, 12310199, 13856570, 6513530, 1577350, 192250, 9436, 90, 0, 0, 0
Offset: 0
Examples
Triangle begins: 1; 0, 1; 1, 2, 0; 5, 8, 2, 0; 36, 49, 19, 1 0; ... For n=2 and k=1 the configurations are (1,4),(2,3) (i.e. a single short pair) and (1,2),(3,4) (i.e. two adjacent short pairs); hence T(2,1) = 2.
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..1325 (rows 0..50)
- Donovan Young, Linear k-Chord Diagrams, arXiv:2004.06921 [math.CO], 2020.
Crossrefs
Programs
-
Mathematica
CoefficientList[Normal[Series[Sum[y^j*(2*j)!/2^j/j!*((1-y*(1-z))/(1-y^2*(1-z)))^(2*j+1), {j, 0, 20}], {y, 0, 20}]], {y, z}]
-
PARI
T(n)={my(v=Vec(sum(j=0, n, (2*j)! * x^j * (1-(1-y)*x + O(x*x^n))^(2*j+1) / (j! * 2^j * (1-(1-y)*x^2 + O(x*x^n))^(2*j+1))))); vector(#v, i, Vecrev(v[i], i))} { my(A=T(8)); for(n=1, #A, print(A[n])) } \\ Andrew Howroyd, May 25 2020
Formula
G.f.: Sum_{j>=0} (2*j)! * y^j * (1-(1-z)*y)^(2*j+1) / (j! * 2^j * (1-(1-z)*y^2)^(2*j+1)).
Comments