A334068 Negative of numerator of y-coordinate of -(2n+1)*P where P is the generator for rational points on the curve y^2 + y = x^3 - x.
1, 0, 3, 35, -92, 8555, 162024, 2882165, 3906507129, -88075171080, 260151768440137, 304986999070045520, -100886180199254542253, 1600059682932627475385835, 2620000542207768964443625516
Offset: 0
Keywords
Examples
-P = (0, -1), -3P = (-1 ,0), -5P = (1/4, -3/8), -7P = (-5/9, -35/27).
Links
- Robert Israel, Table of n, a(n) for n = 0..86
Programs
-
Maple
f:= proc(m) option remember; -(-145*procname(m - 7)*procname(m - 1) + 3225*procname(m - 6)*procname(m - 2) - 18705*procname(m - 5)*procname(m - 3) + 14964*procname(m - 4)^2)/procname(m - 8) end proc: Data:= [1, 0, 3, 35, -92, 8555, 162024, 2882165, 3906507129, -88075171080]: for i from 0 to 9 do f(i):= Data[i+1] od: map(f, [$0..20]); # Robert Israel, Oct 06 2020
-
PARI
{a(n) = -numerator(ellmul(ellinit([0, 0, 1, -1, 0]), [0, 0], -2*n-1)[2])};