A334069 Number of numbers <= 2^n that are the product of exactly four primes, not necessarily distinct.
0, 0, 0, 1, 2, 7, 14, 34, 71, 152, 325, 669, 1405, 2866, 5931, 12139, 24782, 50444, 102458, 207945, 420511, 850518, 1716168, 3460304, 6968639, 14022029, 28189833, 56631732, 113697179, 228115641, 457456902, 916899721, 1836996851, 3678943569, 7365141297, 14740076678, 29490954290
Offset: 1
Keywords
Examples
a(6) = 7 because 16 = 2 * 2 * 2 * 2, 24 = 2 * 2 * 2 * 3, 36 = 2 * 2 * 3 * 3, 40 = 2 * 2 * 2 * 5, 54 = 2 * 3 * 3 * 3, 56 = 2 * 2 * 2 * 7, and 60 = 2 * 2 * 3 * 5 are the seven numbers less than 2^6 = 64 that are each the product of four primes.
Links
- Robert G. Wilson v, Table of n, a(n) for n = 1..53
- Eric Weisstein's World of Mathematics, Almost Prime.
- Eric Weisstein's World of Mathematics, Semiprime.
Programs
-
Mathematica
FourAlmostPrimePi[n_] := Sum[ PrimePi[n/(Prime@i*Prime@j*Prime@k)] - k + 1, {i, PrimePi[n^(1/4)]}, {j, i, PrimePi[(n/Prime@i)^(1/3)]}, {k, j, PrimePi@Sqrt[n/(Prime@i*Prime@j)]}]; Array[FourAlmostPrimePi[2^#] &, 37]
Formula
a(n) = A082996(2^n).