cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A120035 Number of 4-almost primes f such that 2^n < f <= 2^(n+1).

Original entry on oeis.org

0, 0, 0, 1, 1, 5, 7, 20, 37, 81, 173, 344, 736, 1461, 3065, 6208, 12643, 25662, 52014, 105487, 212566, 430007, 865650, 1744136, 3508335, 7053390, 14167804, 28441899, 57065447, 114418462, 229341261, 459442819, 920097130, 1841946718, 3686197728
Offset: 0

Views

Author

Keywords

Comments

The partial sum equals the number of Pi_4(2^n) = A334069(n).

Examples

			(2^4, 2^5] there is one semiprime, namely 24. 16 was counted in the previous entry.
		

Crossrefs

Programs

  • Mathematica
    FourAlmostPrimePi[n_] := Sum[ PrimePi[n/(Prime@i*Prime@j*Prime@k)] - k + 1, {i, PrimePi[n^(1/4)]}, {j, i, PrimePi[(n/Prime@i)^(1/3)]}, {k, j, PrimePi@Sqrt[n/(Prime@i*Prime@j)]}]; t = Table[ FourAlmostPrimePi[2^n], {n, 0, 37}]; Rest@t - Most@t
  • Python
    from math import isqrt
    from sympy import primepi, primerange, integer_nthroot
    def A120035(n):
        x = 1<Chai Wah Wu, Mar 28 2025

A126279 Triangle read by rows: T(k,n) is number of numbers <= 2^n that are products of k primes.

Original entry on oeis.org

1, 2, 1, 4, 2, 1, 6, 6, 2, 1, 11, 10, 7, 2, 1, 18, 22, 13, 7, 2, 1, 31, 42, 30, 14, 7, 2, 1, 54, 82, 60, 34, 15, 7, 2, 1, 97, 157, 125, 71, 36, 15, 7, 2, 1, 172, 304, 256, 152, 77, 37, 15, 7, 2, 1, 309, 589, 513, 325, 168, 81, 37, 15, 7, 2, 1, 564, 1124, 1049, 669, 367, 177, 83, 37
Offset: 1

Views

Author

Keywords

Examples

			Triangle begins:
  1
  2 1
  4 2 1
  6 6 2 1
  11 10 7 2 1
  18 22 13 7 2 1
  31 42 30 14 7 2 1
  54 82 60 34 15 7 2 1
  97 157 125 71 36 15 7 2 1
  172 304 256 152 77 37 15 7 2 1
		

References

  • Adolf Hildebrand, On the number of prime factors of an integer. Ramanujan revisited (Urbana-Champaign, Ill., 1987), 167 - 185, Academic Press, Boston, MA, 1988.
  • Edmund Georg Hermann Landau, Handbuch der Lehre von der Verteilung der Primzahlen, Chelsea Publishing, NY 1953, pp. 205 - 211.

Crossrefs

First column: A007053, second column: A125527, third column: A127396, 4th column: A334069. The last row reversed: A052130; the n-th row's sum: A000225 = 2^n -1.
Cf. A126280: same array but for powers of ten.

Programs

  • Mathematica
    AlmostPrimePi[k_Integer, n_] := Module[{a, i}, a[0] = 1; If[k == 1, PrimePi[n], Sum[ PrimePi[ n/Times @@ Prime[ Array[a, k - 1]]] - a[k - 1] + 1, Evaluate[ Sequence @@ Table[{a[i], a[i - 1], PrimePi[(n/Times @@ Prime[ Array[a, i - 1]])^(1/(k - i + 1))]}, {i, k - 1}]] ]]]; (* Eric W. Weisstein, Feb 07 2006 *)
    Table[ AlmostPrimePi[m, 2^n], {n, 16}, {m, n}] // Flatten
Showing 1-2 of 2 results.