A334072 Decimal expansion of Sum_{k >= 1} 2^(-sigma(k)), where sigma is the sum of divisors function (A000203).
7, 1, 5, 5, 5, 4, 4, 2, 2, 2, 5, 4, 9, 2, 1, 8, 6, 6, 7, 9, 8, 1, 1, 2, 4, 3, 8, 1, 9, 0, 9, 7, 9, 1, 9, 3, 3, 1, 9, 8, 6, 2, 4, 7, 1, 0, 2, 2, 1, 9, 7, 4, 9, 1, 8, 2, 5, 4, 9, 1, 2, 6, 8, 5, 6, 7, 7, 4, 8, 4, 8, 9, 4, 3, 6, 6, 4, 7, 0, 6, 1, 0, 8, 5, 5, 9, 8
Offset: 0
Examples
0.71555442225492186679811243819097919331986247102219...
Links
- Paul Erdős and Ronald L. Graham, Old and new problems and results in combinatorial number theory, L'enseignement Mathématique, Université de Genève, 1980.
Programs
-
Mathematica
RealDigits[Sum[2^(-DivisorSigma[1, n]), {n, 1, 2000}], 10, 100][[1]]
-
PARI
suminf(k=1, 1/2^sigma(k)) \\ Michel Marcus, Apr 14 2020
Comments