cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A334092 Primes p of the form of the form q*2^h + 1, where q is one of the Fermat primes; Primes p for which A329697(p) == 2.

Original entry on oeis.org

7, 11, 13, 41, 97, 137, 193, 641, 769, 12289, 40961, 163841, 557057, 786433, 167772161, 2281701377, 3221225473, 206158430209, 2748779069441, 6597069766657, 38280596832649217, 180143985094819841, 221360928884514619393, 188894659314785808547841, 193428131138340667952988161
Offset: 1

Views

Author

Antti Karttunen, Apr 14 2020

Keywords

Comments

Primes p such that p-1 is not a power of two, but for which A171462(p-1) = (p-1-A052126(p-1)) is [a power of 2].
Primes of the form ((2^(2^k))+1)*2^h + 1, where ((2^(2^k))+1) is one of the Fermat primes, A019434, 3, 5, 17, 257, ..., .

Crossrefs

Primes in A334102.
Intersection of A081091 and A147545.
Subsequences: A039687, A050526, A300407.

Programs

  • PARI
    isA334092(n) = (isprime(n)&&2==A329697(n));
    
  • PARI
    A052126(n) = if(1==n,n,n/vecmax(factor(n)[, 1]));
    A209229(n) = (n && !bitand(n,n-1));
    isA334092(n) = (isprime(n)&&(!A209229(n-1))&&A209229(n-1-A052126(n-1)));
    
  • PARI
    list(lim)=if(exponent(lim\=1)>=2^33, error("Verify composite character of more Fermat primes before checking this high")); my(v=List(),t); for(e=0,4, t=2^2^e+1; while((t<<=1)Charles R Greathouse IV, Apr 14 2020

Extensions

More terms from Giovanni Resta, Apr 14 2020