A334104 Numbers m for which A329697(m) = 4.
43, 47, 49, 57, 59, 63, 67, 69, 71, 77, 79, 81, 86, 87, 91, 93, 94, 95, 98, 99, 105, 107, 109, 111, 114, 115, 117, 118, 121, 126, 131, 134, 135, 138, 142, 143, 145, 149, 151, 154, 155, 157, 158, 159, 162, 165, 167, 169, 172, 174, 175, 179, 181, 182, 183, 185, 186, 188, 190, 195, 196, 198, 210, 214, 218, 219, 222, 225
Offset: 1
Keywords
Examples
63 = 7*9 is a term as both 7 and 9 are terms of A334102. 65535 = 3*5*17*257 is a term as it is a product of four Fermat primes, thus in four steps all odd primes can be eliminated with p -> (p-1) map.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..12193; all terms <= 2^31
Crossrefs
Programs
-
Mathematica
Position[Array[Length@NestWhileList[# - #/FactorInteger[#][[-1, 1]] &, #, # != 2^IntegerExponent[#, 2] &] - 1 &, 225], 4][[All, 1]] (* Michael De Vlieger, Apr 30 2020 *)
-
PARI
A329697(n) = if(!bitand(n,n-1),0,1+A329697(n-(n/vecmax(factor(n)[, 1])))); isA334104(n) = (4==A329697(n));
Comments