cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A334105 Numbers m for which A329697(m) = 5.

Original entry on oeis.org

127, 129, 133, 139, 141, 147, 161, 163, 171, 173, 177, 189, 191, 197, 199, 201, 203, 207, 209, 211, 213, 215, 217, 223, 229, 231, 235, 237, 243, 245, 247, 253, 254, 258, 259, 261, 263, 266, 269, 271, 273, 277, 278, 279, 282, 285, 294, 295, 297, 299, 311, 315, 317, 319, 321, 322, 326, 327, 331, 333, 335, 341, 342, 345, 346, 349, 351
Offset: 1

Views

Author

Antti Karttunen, Apr 14 2020

Keywords

Examples

			127 = 63*2 + 1 is a term, as 127 is a prime and 63 is in A334104 as A329697(63) = 4.
2^32 -1 = 4294967295 = 3*5*17*257*65537 is a term as it is a product of five Fermat primes, thus in five steps all odd primes can be eliminated with p -> (p-1) map.
Likewise for 1442840405 = 5 * 17 * 257^3. (The first term with binary weight = 24).
		

Crossrefs

Row 5 of A334100.
Cf. A334095 (primes present).

Programs

  • Mathematica
    Position[Array[Length@ NestWhileList[# - #/FactorInteger[#][[-1, 1]] &, #, # != 2^IntegerExponent[#, 2] &] - 1 &, 360], 5][[All, 1]] (* Michael De Vlieger, Apr 30 2020 *)
  • PARI
    A329697(n) = if(!bitand(n,n-1),0,1+A329697(n-(n/vecmax(factor(n)[, 1]))));
    isA334105(n) = (5==A329697(n));