A334111 Irregular triangle where row n gives all terms k for which A064097(k) = n.
1, 2, 3, 4, 5, 6, 8, 7, 9, 10, 12, 16, 11, 13, 14, 15, 17, 18, 20, 24, 32, 19, 21, 22, 25, 26, 27, 28, 30, 34, 36, 40, 48, 64, 23, 29, 31, 33, 35, 37, 38, 39, 41, 42, 44, 45, 50, 51, 52, 54, 56, 60, 68, 72, 80, 96, 128, 43, 46, 49, 53, 55, 57, 58, 61, 62, 63, 65, 66, 70, 73, 74, 75, 76, 78, 81, 82, 84
Offset: 0
Examples
Rows 0-6 of the irregular table: 0 | 1; 1 | 2; 2 | 3, 4; 3 | 5, 6, 8; 4 | 7, 9, 10, 12, 16; 5 | 11, 13, 14, 15, 17, 18, 20, 24, 32; 6 | 19, 21, 22, 25, 26, 27, 28, 30, 34, 36, 40, 48, 64;
Links
- Michael De Vlieger, Table of n, a(n) for n = 0..14422 (rows 0 <= n <= 17, flattened)
- Index entries for sequences that are permutations of the natural numbers
Crossrefs
Programs
-
Mathematica
f[n_] := Length@ NestWhileList[# - #/FactorInteger[#][[1, 1]] &, n, # != 1 &]; SortBy[ Range@70, f] (* Second program *) With[{nn = 8}, Values@ Take[KeySort@ PositionIndex@ Array[-1 + Length@ NestWhileList[# - #/FactorInteger[#][[1, 1]] &, #, # > 1 &] &, 2^nn], nn + 1]] // Flatten (* Michael De Vlieger, Apr 18 2020 *)
-
PARI
A060681(n) = (n-if(1==n,n,n/vecmin(factor(n)[,1]))); A064097(n) = if(1==n,0,1+A064097(A060681(n))); for(n=0, 10, for(k=1,2^n,if(A064097(k)==n, print1(k,", "))));
Comments