cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A339676 Nonpalindromic numbers that are products of repunits.

Original entry on oeis.org

161051, 1490841, 1625151, 1771561, 14921841, 15043941, 16266151, 16399251, 17876661, 19487171, 137009631, 149231841, 149352841, 150574941, 151807041, 162676151, 164140251, 165483351, 178927661, 180391761, 196643271, 214358881, 1370219631, 1371330631, 1492331841
Offset: 1

Views

Author

Bernard Schott, Dec 12 2020

Keywords

Comments

The first term is A308365(19).
G. J. Simmons conjectured there are no palindromes of form n^k for k >= 5 (and n > 1) (see link, page 98). According to this conjecture, these perfect powers are terms: {11^k, k>=4}, {111^k, k>=4}, {1111^k, k>=3}, {11111^k, k>=3}, ...

Examples

			a(1) = 161051 = 11^5.
a(2) = 1490841 = 11^2 * 111^2.
a(3) = 1625151 = 11^4 * 111.
a(4) = 1771561 = 11^6.
a(5) = 14921841 = 11^2 * 111 * 1111.
		

Crossrefs

Intersection of A308365 and A029742.

Programs

  • Mathematica
    vec[max_] := Module[{m = Floor @ Log10[9*max + 1], r, s = {1}, s1}, r = (10^Range[2, m] - 1)/9; Do[emax = Floor@Log[r[[k]], max]; s1 = r[[k]]^Range[0, emax]; s = Select[Union[Flatten[Outer[Times, s, s1]]], # <= max &], {k, 1, m - 1}]; s]; Select[vec[1.5*10^9], !PalindromeQ[#] &] (* Amiram Eldar, Dec 12 2020 *)

A334140 Numbers that can be written as a product of distinct palindromes.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 18, 20, 21, 22, 24, 27, 28, 30, 32, 33, 35, 36, 40, 42, 44, 45, 48, 54, 55, 56, 60, 63, 64, 66, 70, 72, 77, 80, 84, 88, 90, 96, 99, 101, 105, 108, 110, 111, 112, 120, 121, 126, 131, 132, 135, 140
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 15 2020

Keywords

Crossrefs

Programs

  • Mathematica
    ok[n_, w_: {}] := n <= 1 || AnyTrue[ Divisors@ n, ! MemberQ[w, #] && PalindromeQ[#] && ok[n/#, Append[w, #]] &]; Select[Range[0, 140], ok] (* Giovanni Resta, Apr 15 2020 *)
Showing 1-2 of 2 results.