A334133 Numbers k > 2 such that gpf(A111076(k)^lambda(k) - 1) = gpf(lambda(k) + 1); where gpf is the greatest prime factor (A006530), and lambda = A002322 is the Carmichael function.
3, 5, 6, 9, 10, 12, 13, 15, 16, 20, 21, 24, 30, 35, 39, 40, 45, 60, 63, 65, 80, 91, 105, 117, 120, 195, 240, 273, 315, 455, 585, 819, 1365, 4095
Offset: 1
Programs
-
Mathematica
gpf[n_] := FactorInteger[n][[-1, 1]]; gpfQ[n_, p_] := Module[{ps = Select[Range[p], PrimeQ], np, m, k}, np = Length[ps]; m = n; If[Divisible[n, p], Do[m /= (ps[[k]]^IntegerExponent[m, ps[[k]]]), {k, 1, np}]; m == 1, False]]; f[n_] := Module[{k = 1, lam = CarmichaelLambda[n]}, While[! CoprimeQ[n, k] || MultiplicativeOrder[k, n] != lam, k++]; k]; Select[Range[2, 2^12], gpfQ[f[#]^(c = CarmichaelLambda[#]) - 1, gpf[c + 1]] &] (* Amiram Eldar, Apr 15 2020 *)
-
PARI
select( is_A334133(n)={n>2||return; my(o=lcm(znstar(n)[2]),k=1); while(gcd(k++,n)>1 || znorder(Mod(k,n))
M. F. Hasler, Apr 17 2020
Extensions
More terms from Amiram Eldar, Apr 15 2020
Comments