A334144 Consider the mapping k -> (k - (k/p)), where prime p | k. a(n) = maximum distinct terms at any position j among the various paths to 1.
1, 1, 1, 1, 1, 2, 2, 1, 2, 2, 2, 2, 2, 2, 3, 1, 1, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 1, 4, 2, 4, 3, 3, 3, 3, 2, 2, 4, 4, 3, 4, 3, 3, 2, 4, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 1, 5, 5, 5, 2, 5, 5, 5, 3, 3, 3, 4, 3, 6, 4, 4, 2, 3, 2, 2, 4, 3, 4, 4, 3, 3, 5, 5, 3, 5, 3, 5, 2, 2, 4, 6, 3, 3, 3, 3, 3, 6, 3
Offset: 1
Keywords
Examples
For n=15, the paths are shown vertically at left, and the graph obtained appears at right: 15 15 15 15 15 => 15 | | | | | _/ \_ | | | | | / \ 10 10 12 12 12 => 10 12 | | | | | | \_ _/ | | | | | | | \ / | 5 8 6 6 8 => 5 8 6 | | | | | \_ | _/| | | | | | \_|_/ | 4 4 3 4 4 => 4 3 | | | | | | _/ | | | | | |_/ 2 2 2 2 2 => 2 | | | | | | | | | | | | 1 1 1 1 1 => 1 Because the maximum number of distinct terms in any row is 3, a(15) = 3.
Links
- Peter Kagey, Table of n, a(n) for n = 1..10000
- Peter Kagey, Math.StackExchange, Does a graded poset on the positive integers generated from subtracting factors define a lattice?
- Richard Stanley, MIT OpenCourseWare, Lecture Notes in Algebraic Combinatorics: The Sperner Property
- Wikipedia, Sperner property of a partially ordered set
Programs
-
Mathematica
Max[Length@ Union@ # & /@ Transpose@ #] & /@ Nest[Function[{a, n}, Append[a, Join @@ Table[Flatten@ Prepend[#, n] & /@ a[[n - n/p]], {p, FactorInteger[n][[All, 1]]}]]] @@ {#, Length@ # + 1} &, {{{1}}}, 105] (* Second program: *) g[n_] := Block[{lst = {{n}}}, While[lst[[-1]] != {1}, lst = Join[lst, {Union@ Flatten[# - #/(First@ # & /@ FactorInteger@ #) & /@ lst[[-1]] ]}]]; Max[Length /@ lst]]; Array[g, 105] (* Robert G. Wilson v, May 08 2020 *)
Comments