A334169 a(n) is the number of ON-cells in the n-th full level of ON-cells of a triangular wedge in the hexagonal grid of A151723 (after 2^k >= n generations have been computed).
1, 2, 4, 6, 8, 10, 14, 16, 18, 26, 30, 32, 34, 50, 58, 62, 64, 66, 98, 114, 122, 126, 128, 130, 194, 226, 242, 250, 254, 256, 258, 386, 450, 482, 498, 506, 510, 512, 514, 770, 898, 962, 994, 1010, 1018, 1022, 1024, 1026, 1538, 1794, 1922, 1986, 2018, 2034, 2042, 2046, 2048, 2050, 3074, 3586, 3842
Offset: 0
Examples
The sequence is the triangle below read by rows, where each row contains m-1 full levels of ON-cells from level 2^(m-1) + 2 through level 2^m, for m >= 2: m\j 0 1 2 3 4 5 6 7 8 0: 1 1: 2 2: 4 3: 6 8 4: 10 14 16 5: 18 26 30 32 6: 34 50 58 62 64 7: 66 98 114 122 126 128 8: 130 194 226 242 250 254 256 9: 258 386 450 482 498 506 510 512 10: 514 770 898 962 994 1010 1018 1022 1024 ... A formula for the m-1 elements in positions (m, j), 0 <= j <= m-2, in each row m >= 2 is: b(m, j) = 2 + Sum_{k=0..j} 2^(m-k-1).
Links
- Hartmut F. W. Hoft, Proof of positions of full levels
Crossrefs
Cf. A151723.
Programs
-
Mathematica
triangleRow[m_] := Map[2+Sum[2^(m-k-1), {k, 0, #}]&, Range[0, m-2]]/;m>=2 triangleRow[10] (* last line in triangle in Comments section *) a334169[0]=1; a334169[1]=2; a334169[n_] := Module[{k, j}, k=Floor[(3 + Sqrt[1 + 8(n-2)])/2]; j = n - 2 - (k-2)(k-1)/2; 2 + Sum[2^(k-i-1), {i, 0, j}]]/;n>=2 Map[a334169,Range[0,66]] (* sequence data *)
Formula
a(0) = 1; a(1) = 2, a(n) = 2 + Sum_{i=0..j} 2^(k-i-1), where k = floor((3 + sqrt(1 + 8*(n-2)))/2) and j = n - 2 - (k-2)*(k-1)/2 for n >= 2.
Comments