A334187 Number T(n,k) of k-element subsets of [n] avoiding 3-term arithmetic progressions; triangle T(n,k), n>=0, 0<=k<=A003002(n), read by rows.
1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 4, 6, 2, 1, 5, 10, 6, 1, 1, 6, 15, 14, 4, 1, 7, 21, 26, 10, 1, 8, 28, 44, 25, 1, 9, 36, 68, 51, 4, 1, 10, 45, 100, 98, 24, 1, 11, 55, 140, 165, 64, 7, 1, 12, 66, 190, 267, 144, 25, 1, 13, 78, 250, 407, 284, 78, 6, 1, 14, 91, 322, 601, 520, 188, 22, 1
Offset: 0
Examples
Triangle T(n,k) begins: 1; 1, 1; 1, 2, 1; 1, 3, 3; 1, 4, 6, 2; 1, 5, 10, 6, 1; 1, 6, 15, 14, 4; 1, 7, 21, 26, 10; 1, 8, 28, 44, 25; 1, 9, 36, 68, 51, 4; 1, 10, 45, 100, 98, 24; 1, 11, 55, 140, 165, 64, 7; 1, 12, 66, 190, 267, 144, 25; 1, 13, 78, 250, 407, 284, 78, 6; 1, 14, 91, 322, 601, 520, 188, 22, 1; 1, 15, 105, 406, 849, 862, 386, 64, 4; 1, 16, 120, 504, 1175, 1394, 763, 164, 14; ...
Links
- Fausto A. C. Cariboni, Rows n = 0..70, flattened (rows n = 0..40 from Alois P. Heinz)
- Eric Weisstein's World of Mathematics, Nonaveraging Sequence
- Wikipedia, Arithmetic progression
- Wikipedia, Salem-Spencer set
- Index entries related to non-averaging sequences
Crossrefs
Programs
-
Maple
b:= proc(n, s) option remember; `if`(n=0, 1, b(n-1, s)+ `if`( ormap(j-> 2*j-n in s, s), 0, expand(x*b(n-1, s union {n})))) end: T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, {})): seq(T(n), n=0..16);
-
Mathematica
b[n_, s_] := b[n, s] = If[n == 0, 1, b[n-1, s] + If[AnyTrue[s, MemberQ[s, 2 # - n]&], 0, Expand[x b[n-1, s ~Union~ {n}]]]]; T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][ b[n, {}]]; T /@ Range[0, 16] // Flatten (* Jean-François Alcover, May 30 2020, after Maple *)
Comments