cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A334210 a(n) = sigma(prime(n) + 1) - sigma(prime(n)).

Original entry on oeis.org

1, 3, 6, 7, 16, 10, 21, 22, 36, 42, 31, 22, 54, 40, 76, 66, 108, 34, 58, 123, 40, 106, 140, 144, 73, 114, 106, 172, 106, 126, 127, 204, 150, 196, 222, 148, 82, 130, 312, 186, 366, 154, 316, 100, 270, 265, 166, 280, 332, 202, 312, 504, 157, 476, 270, 456, 450, 286, 142, 294
Offset: 1

Views

Author

Bernard Schott, Apr 18 2020

Keywords

Comments

Lim_{n->oo} a(n) = oo because a(n) > sqrt(prime(n)) [see the reference], but this sequence is not monotone increasing.
a(n) is the sum of aliquot parts of the sum of divisors of n-th prime (see Marcus's formula). - Omar E. Pol, Apr 18 2020

Examples

			As prime(6) = 13, a(6) = sigma(14) - sigma(13) = 24 - 14 = 10.
		

References

  • J.-M. De Koninck & A. Mercier, 1001 Problèmes en Théorie Classique des Nombres, Problème 617 pp. 82, 280, Ellipses, Paris, 2004.

Crossrefs

Programs

  • Maple
    G:= seq(sigma(ithprime(p)+1)-sigma(ithprime(p)), p=1..200);
  • Mathematica
    (DivisorSigma[1, # + 1] - # - 1)& @ Select[Range[300], PrimeQ] (* Amiram Eldar, Apr 18 2020 *)
  • PARI
    a(n) = my(p=prime(n)); sigma(p+1) - (p+1); \\ Michel Marcus, Apr 18 2020

Formula

a(n) = A008333(n) - A008864(n).
From Michel Marcus, Apr 18 2020: (Start)
a(n) = A001065(A008864(n)).
a(n) = A051027(prime(n)) - A000203(prime(n)). (End)